|
import os |
|
import imageio |
|
import numpy as np |
|
import torch |
|
import rembg |
|
from PIL import Image |
|
from torchvision.transforms import v2 |
|
from pytorch_lightning import seed_everything |
|
from omegaconf import OmegaConf |
|
from einops import rearrange, repeat |
|
from tqdm import tqdm |
|
import glm |
|
from diffusers import DiffusionPipeline, EulerAncestralDiscreteScheduler |
|
|
|
from src.data.objaverse import load_mipmap |
|
from src.utils import render_utils |
|
from src.utils.train_util import instantiate_from_config |
|
from src.utils.camera_util import ( |
|
FOV_to_intrinsics, |
|
get_zero123plus_input_cameras, |
|
get_circular_camera_poses, |
|
) |
|
from src.utils.mesh_util import save_obj, save_glb |
|
from src.utils.infer_util import remove_background, resize_foreground, images_to_video |
|
|
|
import tempfile |
|
from huggingface_hub import hf_hub_download |
|
|
|
|
|
if torch.cuda.is_available() and torch.cuda.device_count() >= 2: |
|
device0 = torch.device('cuda:0') |
|
device1 = torch.device('cuda:0') |
|
else: |
|
device0 = torch.device('cuda' if torch.cuda.is_available() else 'cpu') |
|
device1 = device0 |
|
|
|
|
|
model_cache_dir = './ckpts/' |
|
os.makedirs(model_cache_dir, exist_ok=True) |
|
|
|
def get_render_cameras(batch_size=1, M=120, radius=4.0, elevation=20.0, is_flexicubes=False, fov=50): |
|
""" |
|
Get the rendering camera parameters. |
|
""" |
|
train_res = [512, 512] |
|
cam_near_far = [0.1, 1000.0] |
|
fovy = np.deg2rad(fov) |
|
proj_mtx = render_utils.perspective(fovy, train_res[1] / train_res[0], cam_near_far[0], cam_near_far[1]) |
|
all_mv = [] |
|
all_mvp = [] |
|
all_campos = [] |
|
if isinstance(elevation, tuple): |
|
elevation_0 = np.deg2rad(elevation[0]) |
|
elevation_1 = np.deg2rad(elevation[1]) |
|
for i in range(M//2): |
|
azimuth = 2 * np.pi * i / (M // 2) |
|
z = radius * np.cos(azimuth) * np.sin(elevation_0) |
|
x = radius * np.sin(azimuth) * np.sin(elevation_0) |
|
y = radius * np.cos(elevation_0) |
|
|
|
eye = glm.vec3(x, y, z) |
|
at = glm.vec3(0.0, 0.0, 0.0) |
|
up = glm.vec3(0.0, 1.0, 0.0) |
|
view_matrix = glm.lookAt(eye, at, up) |
|
mv = torch.from_numpy(np.array(view_matrix)) |
|
mvp = proj_mtx @ (mv) |
|
campos = torch.linalg.inv(mv)[:3, 3] |
|
all_mv.append(mv[None, ...].cuda()) |
|
all_mvp.append(mvp[None, ...].cuda()) |
|
all_campos.append(campos[None, ...].cuda()) |
|
for i in range(M//2): |
|
azimuth = 2 * np.pi * i / (M // 2) |
|
z = radius * np.cos(azimuth) * np.sin(elevation_1) |
|
x = radius * np.sin(azimuth) * np.sin(elevation_1) |
|
y = radius * np.cos(elevation_1) |
|
|
|
eye = glm.vec3(x, y, z) |
|
at = glm.vec3(0.0, 0.0, 0.0) |
|
up = glm.vec3(0.0, 1.0, 0.0) |
|
view_matrix = glm.lookAt(eye, at, up) |
|
mv = torch.from_numpy(np.array(view_matrix)) |
|
mvp = proj_mtx @ (mv) |
|
campos = torch.linalg.inv(mv)[:3, 3] |
|
all_mv.append(mv[None, ...].cuda()) |
|
all_mvp.append(mvp[None, ...].cuda()) |
|
all_campos.append(campos[None, ...].cuda()) |
|
else: |
|
|
|
for i in range(M): |
|
azimuth = 2 * np.pi * i / M |
|
z = radius * np.cos(azimuth) * np.sin(elevation) |
|
x = radius * np.sin(azimuth) * np.sin(elevation) |
|
y = radius * np.cos(elevation) |
|
|
|
eye = glm.vec3(x, y, z) |
|
at = glm.vec3(0.0, 0.0, 0.0) |
|
up = glm.vec3(0.0, 1.0, 0.0) |
|
view_matrix = glm.lookAt(eye, at, up) |
|
mv = torch.from_numpy(np.array(view_matrix)) |
|
mvp = proj_mtx @ (mv) |
|
campos = torch.linalg.inv(mv)[:3, 3] |
|
all_mv.append(mv[None, ...].cuda()) |
|
all_mvp.append(mvp[None, ...].cuda()) |
|
all_campos.append(campos[None, ...].cuda()) |
|
all_mv = torch.stack(all_mv, dim=0).unsqueeze(0).squeeze(2) |
|
all_mvp = torch.stack(all_mvp, dim=0).unsqueeze(0).squeeze(2) |
|
all_campos = torch.stack(all_campos, dim=0).unsqueeze(0).squeeze(2) |
|
return all_mv, all_mvp, all_campos |
|
|
|
|
|
def render_frames(model, planes, render_cameras, camera_pos, env, materials, render_size=512, chunk_size=1, is_flexicubes=False): |
|
""" |
|
Render frames from triplanes. |
|
""" |
|
frames = [] |
|
albedos = [] |
|
pbr_spec_lights = [] |
|
pbr_diffuse_lights = [] |
|
normals = [] |
|
alphas = [] |
|
for i in tqdm(range(0, render_cameras.shape[1], chunk_size)): |
|
if is_flexicubes: |
|
out = model.forward_geometry( |
|
planes, |
|
render_cameras[:, i:i+chunk_size], |
|
camera_pos[:, i:i+chunk_size], |
|
[[env]*chunk_size], |
|
[[materials]*chunk_size], |
|
render_size=render_size, |
|
) |
|
frame = out['pbr_img'] |
|
albedo = out['albedo'] |
|
pbr_spec_light = out['pbr_spec_light'] |
|
pbr_diffuse_light = out['pbr_diffuse_light'] |
|
normal = out['normal'] |
|
alpha = out['mask'] |
|
else: |
|
frame = model.forward_synthesizer( |
|
planes, |
|
render_cameras[i], |
|
render_size=render_size, |
|
)['images_rgb'] |
|
frames.append(frame) |
|
albedos.append(albedo) |
|
pbr_spec_lights.append(pbr_spec_light) |
|
pbr_diffuse_lights.append(pbr_diffuse_light) |
|
normals.append(normal) |
|
alphas.append(alpha) |
|
|
|
frames = torch.cat(frames, dim=1)[0] |
|
alphas = torch.cat(alphas, dim=1)[0] |
|
albedos = torch.cat(albedos, dim=1)[0] |
|
pbr_spec_lights = torch.cat(pbr_spec_lights, dim=1)[0] |
|
pbr_diffuse_lights = torch.cat(pbr_diffuse_lights, dim=1)[0] |
|
normals = torch.cat(normals, dim=0).permute(0,3,1,2)[:,:3] |
|
return frames, albedos, pbr_spec_lights, pbr_diffuse_lights, normals, alphas |
|
|
|
|
|
|
|
def images_to_video(images, output_path, fps=30): |
|
|
|
os.makedirs(os.path.dirname(output_path), exist_ok=True) |
|
frames = [] |
|
for i in range(images.shape[0]): |
|
frame = (images[i].permute(1, 2, 0).cpu().numpy() * 255).astype(np.uint8).clip(0, 255) |
|
assert frame.shape[0] == images.shape[2] and frame.shape[1] == images.shape[3], \ |
|
f"Frame shape mismatch: {frame.shape} vs {images.shape}" |
|
assert frame.min() >= 0 and frame.max() <= 255, \ |
|
f"Frame value out of range: {frame.min()} ~ {frame.max()}" |
|
frames.append(frame) |
|
imageio.mimwrite(output_path, np.stack(frames), fps=fps, codec='h264') |
|
|
|
|
|
|
|
|
|
|
|
|
|
seed_everything(0) |
|
|
|
config_path = 'configs/PRM_inference.yaml' |
|
config = OmegaConf.load(config_path) |
|
config_name = os.path.basename(config_path).replace('.yaml', '') |
|
model_config = config.model_config |
|
infer_config = config.infer_config |
|
|
|
IS_FLEXICUBES = True |
|
|
|
device = torch.device('cuda') |
|
|
|
|
|
print('Loading diffusion model ...') |
|
pipeline = DiffusionPipeline.from_pretrained( |
|
"sudo-ai/zero123plus-v1.2", |
|
custom_pipeline="zero123plus", |
|
torch_dtype=torch.float16, |
|
cache_dir=model_cache_dir |
|
) |
|
pipeline.scheduler = EulerAncestralDiscreteScheduler.from_config( |
|
pipeline.scheduler.config, timestep_spacing='trailing' |
|
) |
|
|
|
|
|
print('Loading custom white-background unet ...') |
|
if os.path.exists(infer_config.unet_path): |
|
unet_ckpt_path = infer_config.unet_path |
|
else: |
|
unet_ckpt_path = hf_hub_download(repo_id="LTT/PRM", filename="diffusion_pytorch_model.bin", repo_type="model") |
|
state_dict = torch.load(unet_ckpt_path, map_location='cpu') |
|
pipeline.unet.load_state_dict(state_dict, strict=True) |
|
|
|
pipeline = pipeline.to(device) |
|
|
|
|
|
print('Loading reconstruction model ...') |
|
model = instantiate_from_config(model_config) |
|
if os.path.exists(infer_config.model_path): |
|
model_ckpt_path = infer_config.model_path |
|
else: |
|
model_ckpt_path = hf_hub_download(repo_id="LTT/PRM", filename="final_ckpt.ckpt", repo_type="model") |
|
state_dict = torch.load(model_ckpt_path, map_location='cpu')['state_dict'] |
|
state_dict = {k[14:]: v for k, v in state_dict.items() if k.startswith('lrm_generator.')} |
|
model.load_state_dict(state_dict, strict=True) |
|
|
|
model = model.to(device1) |
|
if IS_FLEXICUBES: |
|
model.init_flexicubes_geometry(device1, fovy=30.0) |
|
model = model.eval() |
|
|
|
print('Loading Finished!') |
|
|
|
|
|
def check_input_image(input_image): |
|
if input_image is None: |
|
raise gr.Error("No image uploaded!") |
|
|
|
|
|
def preprocess(input_image, do_remove_background): |
|
|
|
rembg_session = rembg.new_session() if do_remove_background else None |
|
if do_remove_background: |
|
input_image = remove_background(input_image, rembg_session) |
|
input_image = resize_foreground(input_image, 0.85) |
|
|
|
return input_image |
|
|
|
|
|
def generate_mvs(input_image, sample_steps, sample_seed): |
|
|
|
seed_everything(sample_seed) |
|
|
|
|
|
generator = torch.Generator(device=device0) |
|
z123_image = pipeline( |
|
input_image, |
|
num_inference_steps=sample_steps, |
|
generator=generator, |
|
).images[0] |
|
|
|
show_image = np.asarray(z123_image, dtype=np.uint8) |
|
show_image = torch.from_numpy(show_image) |
|
show_image = rearrange(show_image, '(n h) (m w) c -> (n m) h w c', n=3, m=2) |
|
show_image = rearrange(show_image, '(n m) h w c -> (n h) (m w) c', n=2, m=3) |
|
show_image = Image.fromarray(show_image.numpy()) |
|
|
|
return z123_image, show_image |
|
|
|
|
|
def make_mesh(mesh_fpath, planes): |
|
|
|
mesh_basename = os.path.basename(mesh_fpath).split('.')[0] |
|
mesh_dirname = os.path.dirname(mesh_fpath) |
|
mesh_glb_fpath = os.path.join(mesh_dirname, f"{mesh_basename}.glb") |
|
|
|
with torch.no_grad(): |
|
|
|
|
|
mesh_out = model.extract_mesh( |
|
planes, |
|
use_texture_map=False, |
|
**infer_config, |
|
) |
|
|
|
vertices, faces, vertex_colors = mesh_out |
|
vertices = vertices[:, [1, 2, 0]] |
|
|
|
save_glb(vertices, faces, vertex_colors, mesh_glb_fpath) |
|
save_obj(vertices, faces, vertex_colors, mesh_fpath) |
|
|
|
print(f"Mesh saved to {mesh_fpath}") |
|
|
|
return mesh_fpath, mesh_glb_fpath |
|
|
|
|
|
def make3d(images): |
|
|
|
images = np.asarray(images, dtype=np.float32) / 255.0 |
|
images = torch.from_numpy(images).permute(2, 0, 1).contiguous().float() |
|
images = rearrange(images, 'c (n h) (m w) -> (n m) c h w', n=3, m=2) |
|
|
|
input_cameras = get_zero123plus_input_cameras(batch_size=1, radius=3.2, fov=30).to(device).to(device1) |
|
all_mv, all_mvp, all_campos = get_render_cameras( |
|
batch_size=1, |
|
M=240, |
|
radius=4.5, |
|
elevation=(90, 60.0), |
|
is_flexicubes=IS_FLEXICUBES, |
|
fov=30 |
|
) |
|
|
|
images = images.unsqueeze(0).to(device1) |
|
images = v2.functional.resize(images, (512, 512), interpolation=3, antialias=True).clamp(0, 1) |
|
|
|
mesh_fpath = tempfile.NamedTemporaryFile(suffix=f".obj", delete=False).name |
|
print(mesh_fpath) |
|
mesh_basename = os.path.basename(mesh_fpath).split('.')[0] |
|
mesh_dirname = os.path.dirname(mesh_fpath) |
|
video_fpath = os.path.join(mesh_dirname, f"{mesh_basename}.mp4") |
|
ENV = load_mipmap("env_mipmap/6") |
|
materials = (0.0,0.9) |
|
with torch.no_grad(): |
|
|
|
planes = model.forward_planes(images, input_cameras) |
|
|
|
|
|
chunk_size = 20 if IS_FLEXICUBES else 1 |
|
render_size = 512 |
|
|
|
frames = [] |
|
frames, albedos, pbr_spec_lights, pbr_diffuse_lights, normals, alphas = render_frames( |
|
model, |
|
planes, |
|
render_cameras=all_mvp, |
|
camera_pos=all_campos, |
|
env=ENV, |
|
materials=materials, |
|
render_size=render_size, |
|
chunk_size=chunk_size, |
|
is_flexicubes=IS_FLEXICUBES, |
|
) |
|
normals = (torch.nn.functional.normalize(normals) + 1) / 2 |
|
normals = normals * alphas + (1-alphas) |
|
all_frames = torch.cat([frames, albedos, pbr_spec_lights, pbr_diffuse_lights, normals], dim=3) |
|
|
|
images_to_video( |
|
all_frames, |
|
video_fpath, |
|
fps=30, |
|
) |
|
|
|
print(f"Video saved to {video_fpath}") |
|
|
|
mesh_fpath, mesh_glb_fpath = make_mesh(mesh_fpath, planes) |
|
|
|
return video_fpath, mesh_fpath, mesh_glb_fpath |
|
|
|
|
|
import gradio as gr |
|
|
|
_HEADER_ = ''' |
|
<h2><b>Official π€ Gradio Demo</b></h2><h2><a href='https://github.com/g3956/PRM' target='_blank'><b>PRM: Photometric Stereo based Large Reconstruction Model</b></a></h2> |
|
|
|
**PRM** is a feed-forward framework for high-quality 3D mesh generation with fine-grained local details from a single image. |
|
|
|
Code: <a href='https://github.com/g3956/PRM' target='_blank'>GitHub</a>. Techenical report: <a href='https://arxiv.org/abs/2404.07191' target='_blank'>ArXiv</a>. |
|
''' |
|
|
|
_CITE_ = r""" |
|
If PRM is helpful, please help to β the <a href='https://github.com/g3956/PRM' target='_blank'>Github Repo</a>. Thanks! |
|
--- |
|
π **Citation** |
|
|
|
If you find our work useful for your research or applications, please cite using this bibtex: |
|
```bibtex |
|
@article{xu2024instantmesh, |
|
title={InstantMesh: Efficient 3D Mesh Generation from a Single Image with Sparse-view Large Reconstruction Models}, |
|
author={Xu, Jiale and Cheng, Weihao and Gao, Yiming and Wang, Xintao and Gao, Shenghua and Shan, Ying}, |
|
journal={arXiv preprint arXiv:2404.07191}, |
|
year={2024} |
|
} |
|
``` |
|
|
|
π **License** |
|
|
|
Apache-2.0 LICENSE. Please refer to the [LICENSE file](https://huggingface.co/spaces/TencentARC/InstantMesh/blob/main/LICENSE) for details. |
|
|
|
π§ **Contact** |
|
|
|
If you have any questions, feel free to open a discussion or contact us at <b>[email protected]</b>. |
|
""" |
|
|
|
with gr.Blocks() as demo: |
|
gr.Markdown(_HEADER_) |
|
with gr.Row(variant="panel"): |
|
with gr.Column(): |
|
with gr.Row(): |
|
input_image = gr.Image( |
|
label="Input Image", |
|
image_mode="RGBA", |
|
sources="upload", |
|
width=256, |
|
height=256, |
|
type="pil", |
|
elem_id="content_image", |
|
) |
|
processed_image = gr.Image( |
|
label="Processed Image", |
|
image_mode="RGBA", |
|
width=256, |
|
height=256, |
|
type="pil", |
|
interactive=False |
|
) |
|
with gr.Row(): |
|
with gr.Group(): |
|
do_remove_background = gr.Checkbox( |
|
label="Remove Background", value=True |
|
) |
|
sample_seed = gr.Number(value=42, label="Seed Value", precision=0) |
|
|
|
sample_steps = gr.Slider( |
|
label="Sample Steps", |
|
minimum=30, |
|
maximum=100, |
|
value=75, |
|
step=5 |
|
) |
|
|
|
with gr.Row(): |
|
submit = gr.Button("Generate", elem_id="generate", variant="primary") |
|
|
|
with gr.Row(variant="panel"): |
|
gr.Examples( |
|
examples=[ |
|
os.path.join("examples", img_name) for img_name in sorted(os.listdir("examples")) |
|
], |
|
inputs=[input_image], |
|
label="Examples", |
|
examples_per_page=20 |
|
) |
|
|
|
with gr.Column(): |
|
|
|
with gr.Row(): |
|
|
|
with gr.Column(): |
|
mv_show_images = gr.Image( |
|
label="Generated Multi-views", |
|
type="pil", |
|
width=379, |
|
interactive=False |
|
) |
|
|
|
with gr.Column(): |
|
with gr.Column(): |
|
output_video = gr.Video( |
|
label="video", format="mp4", |
|
width=768, |
|
autoplay=True, |
|
interactive=False |
|
) |
|
|
|
with gr.Row(): |
|
with gr.Tab("OBJ"): |
|
output_model_obj = gr.Model3D( |
|
label="Output Model (OBJ Format)", |
|
|
|
interactive=False, |
|
) |
|
gr.Markdown("Note: Downloaded .obj model will be flipped. Export .glb instead or manually flip it before usage.") |
|
with gr.Tab("GLB"): |
|
output_model_glb = gr.Model3D( |
|
label="Output Model (GLB Format)", |
|
|
|
interactive=False, |
|
) |
|
gr.Markdown("Note: The model shown here has a darker appearance. Download to get correct results.") |
|
|
|
with gr.Row(): |
|
gr.Markdown('''Try a different <b>seed value</b> if the result is unsatisfying (Default: 42).''') |
|
|
|
gr.Markdown(_CITE_) |
|
mv_images = gr.State() |
|
|
|
submit.click(fn=check_input_image, inputs=[input_image]).success( |
|
fn=preprocess, |
|
inputs=[input_image, do_remove_background], |
|
outputs=[processed_image], |
|
).success( |
|
fn=generate_mvs, |
|
inputs=[processed_image, sample_steps, sample_seed], |
|
outputs=[mv_images, mv_show_images], |
|
).success( |
|
fn=make3d, |
|
inputs=[mv_images], |
|
outputs=[output_video, output_model_obj, output_model_glb] |
|
) |
|
|
|
demo.queue(max_size=10) |
|
demo.launch() |
|
|