Delete folder infer/.ipynb_checkpoints with huggingface_hub
Browse files- infer/.ipynb_checkpoints/__init__-checkpoint.py +0 -32
- infer/.ipynb_checkpoints/gif_render-checkpoint.py +0 -79
- infer/.ipynb_checkpoints/image_to_views-checkpoint.py +0 -126
- infer/.ipynb_checkpoints/removebg-checkpoint.py +0 -101
- infer/.ipynb_checkpoints/text_to_image-checkpoint.py +0 -105
- infer/.ipynb_checkpoints/utils-checkpoint.py +0 -87
- infer/.ipynb_checkpoints/views_to_mesh-checkpoint.py +0 -154
infer/.ipynb_checkpoints/__init__-checkpoint.py
DELETED
@@ -1,32 +0,0 @@
|
|
1 |
-
# Open Source Model Licensed under the Apache License Version 2.0
|
2 |
-
# and Other Licenses of the Third-Party Components therein:
|
3 |
-
# The below Model in this distribution may have been modified by THL A29 Limited
|
4 |
-
# ("Tencent Modifications"). All Tencent Modifications are Copyright (C) 2024 THL A29 Limited.
|
5 |
-
|
6 |
-
# Copyright (C) 2024 THL A29 Limited, a Tencent company. All rights reserved.
|
7 |
-
# The below software and/or models in this distribution may have been
|
8 |
-
# modified by THL A29 Limited ("Tencent Modifications").
|
9 |
-
# All Tencent Modifications are Copyright (C) THL A29 Limited.
|
10 |
-
|
11 |
-
# Hunyuan 3D is licensed under the TENCENT HUNYUAN NON-COMMERCIAL LICENSE AGREEMENT
|
12 |
-
# except for the third-party components listed below.
|
13 |
-
# Hunyuan 3D does not impose any additional limitations beyond what is outlined
|
14 |
-
# in the repsective licenses of these third-party components.
|
15 |
-
# Users must comply with all terms and conditions of original licenses of these third-party
|
16 |
-
# components and must ensure that the usage of the third party components adheres to
|
17 |
-
# all relevant laws and regulations.
|
18 |
-
|
19 |
-
# For avoidance of doubts, Hunyuan 3D means the large language models and
|
20 |
-
# their software and algorithms, including trained model weights, parameters (including
|
21 |
-
# optimizer states), machine-learning model code, inference-enabling code, training-enabling code,
|
22 |
-
# fine-tuning enabling code and other elements of the foregoing made publicly available
|
23 |
-
# by Tencent in accordance with TENCENT HUNYUAN COMMUNITY LICENSE AGREEMENT.
|
24 |
-
|
25 |
-
from .removebg import Removebg
|
26 |
-
from .text_to_image import Text2Image
|
27 |
-
from .image_to_views import Image2Views, save_gif
|
28 |
-
from .views_to_mesh import Views2Mesh
|
29 |
-
from .gif_render import GifRenderer
|
30 |
-
|
31 |
-
from .utils import seed_everything, auto_amp_inference
|
32 |
-
from .utils import get_parameter_number, set_parameter_grad_false
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
infer/.ipynb_checkpoints/gif_render-checkpoint.py
DELETED
@@ -1,79 +0,0 @@
|
|
1 |
-
# Open Source Model Licensed under the Apache License Version 2.0
|
2 |
-
# and Other Licenses of the Third-Party Components therein:
|
3 |
-
# The below Model in this distribution may have been modified by THL A29 Limited
|
4 |
-
# ("Tencent Modifications"). All Tencent Modifications are Copyright (C) 2024 THL A29 Limited.
|
5 |
-
|
6 |
-
# Copyright (C) 2024 THL A29 Limited, a Tencent company. All rights reserved.
|
7 |
-
# The below software and/or models in this distribution may have been
|
8 |
-
# modified by THL A29 Limited ("Tencent Modifications").
|
9 |
-
# All Tencent Modifications are Copyright (C) THL A29 Limited.
|
10 |
-
|
11 |
-
# Hunyuan 3D is licensed under the TENCENT HUNYUAN NON-COMMERCIAL LICENSE AGREEMENT
|
12 |
-
# except for the third-party components listed below.
|
13 |
-
# Hunyuan 3D does not impose any additional limitations beyond what is outlined
|
14 |
-
# in the repsective licenses of these third-party components.
|
15 |
-
# Users must comply with all terms and conditions of original licenses of these third-party
|
16 |
-
# components and must ensure that the usage of the third party components adheres to
|
17 |
-
# all relevant laws and regulations.
|
18 |
-
|
19 |
-
# For avoidance of doubts, Hunyuan 3D means the large language models and
|
20 |
-
# their software and algorithms, including trained model weights, parameters (including
|
21 |
-
# optimizer states), machine-learning model code, inference-enabling code, training-enabling code,
|
22 |
-
# fine-tuning enabling code and other elements of the foregoing made publicly available
|
23 |
-
# by Tencent in accordance with TENCENT HUNYUAN COMMUNITY LICENSE AGREEMENT.
|
24 |
-
|
25 |
-
import os, sys
|
26 |
-
sys.path.insert(0, f"{os.path.dirname(os.path.dirname(os.path.abspath(__file__)))}")
|
27 |
-
|
28 |
-
from svrm.ldm.vis_util import render
|
29 |
-
from infer.utils import seed_everything, timing_decorator
|
30 |
-
|
31 |
-
class GifRenderer():
|
32 |
-
'''
|
33 |
-
render frame(s) of mesh using pytorch3d
|
34 |
-
'''
|
35 |
-
def __init__(self, device="cuda:0"):
|
36 |
-
self.device = device
|
37 |
-
|
38 |
-
@timing_decorator("gif render")
|
39 |
-
def __call__(
|
40 |
-
self,
|
41 |
-
obj_filename,
|
42 |
-
elev=0,
|
43 |
-
azim=0,
|
44 |
-
resolution=512,
|
45 |
-
gif_dst_path='',
|
46 |
-
n_views=120,
|
47 |
-
fps=30,
|
48 |
-
rgb=True
|
49 |
-
):
|
50 |
-
render(
|
51 |
-
obj_filename,
|
52 |
-
elev=elev,
|
53 |
-
azim=azim,
|
54 |
-
resolution=resolution,
|
55 |
-
gif_dst_path=gif_dst_path,
|
56 |
-
n_views=n_views,
|
57 |
-
fps=fps,
|
58 |
-
device=self.device,
|
59 |
-
rgb=rgb
|
60 |
-
)
|
61 |
-
|
62 |
-
if __name__ == "__main__":
|
63 |
-
import argparse
|
64 |
-
|
65 |
-
def get_args():
|
66 |
-
parser = argparse.ArgumentParser()
|
67 |
-
parser.add_argument("--mesh_path", type=str, required=True)
|
68 |
-
parser.add_argument("--output_gif_path", type=str, required=True)
|
69 |
-
parser.add_argument("--device", default="cuda:0", type=str)
|
70 |
-
return parser.parse_args()
|
71 |
-
|
72 |
-
args = get_args()
|
73 |
-
|
74 |
-
gif_renderer = GifRenderer(device=args.device)
|
75 |
-
|
76 |
-
gif_renderer(
|
77 |
-
args.mesh_path,
|
78 |
-
gif_dst_path = args.output_gif_path
|
79 |
-
)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
infer/.ipynb_checkpoints/image_to_views-checkpoint.py
DELETED
@@ -1,126 +0,0 @@
|
|
1 |
-
# Open Source Model Licensed under the Apache License Version 2.0
|
2 |
-
# and Other Licenses of the Third-Party Components therein:
|
3 |
-
# The below Model in this distribution may have been modified by THL A29 Limited
|
4 |
-
# ("Tencent Modifications"). All Tencent Modifications are Copyright (C) 2024 THL A29 Limited.
|
5 |
-
|
6 |
-
# Copyright (C) 2024 THL A29 Limited, a Tencent company. All rights reserved.
|
7 |
-
# The below software and/or models in this distribution may have been
|
8 |
-
# modified by THL A29 Limited ("Tencent Modifications").
|
9 |
-
# All Tencent Modifications are Copyright (C) THL A29 Limited.
|
10 |
-
|
11 |
-
# Hunyuan 3D is licensed under the TENCENT HUNYUAN NON-COMMERCIAL LICENSE AGREEMENT
|
12 |
-
# except for the third-party components listed below.
|
13 |
-
# Hunyuan 3D does not impose any additional limitations beyond what is outlined
|
14 |
-
# in the repsective licenses of these third-party components.
|
15 |
-
# Users must comply with all terms and conditions of original licenses of these third-party
|
16 |
-
# components and must ensure that the usage of the third party components adheres to
|
17 |
-
# all relevant laws and regulations.
|
18 |
-
|
19 |
-
# For avoidance of doubts, Hunyuan 3D means the large language models and
|
20 |
-
# their software and algorithms, including trained model weights, parameters (including
|
21 |
-
# optimizer states), machine-learning model code, inference-enabling code, training-enabling code,
|
22 |
-
# fine-tuning enabling code and other elements of the foregoing made publicly available
|
23 |
-
# by Tencent in accordance with TENCENT HUNYUAN COMMUNITY LICENSE AGREEMENT.
|
24 |
-
|
25 |
-
import os, sys
|
26 |
-
sys.path.insert(0, f"{os.path.dirname(os.path.dirname(os.path.abspath(__file__)))}")
|
27 |
-
|
28 |
-
import time
|
29 |
-
import torch
|
30 |
-
import random
|
31 |
-
import numpy as np
|
32 |
-
from PIL import Image
|
33 |
-
from einops import rearrange
|
34 |
-
from PIL import Image, ImageSequence
|
35 |
-
|
36 |
-
from infer.utils import seed_everything, timing_decorator, auto_amp_inference
|
37 |
-
from infer.utils import get_parameter_number, set_parameter_grad_false, str_to_bool
|
38 |
-
from mvd.hunyuan3d_mvd_std_pipeline import HunYuan3D_MVD_Std_Pipeline
|
39 |
-
from mvd.hunyuan3d_mvd_lite_pipeline import Hunyuan3d_MVD_Lite_Pipeline
|
40 |
-
|
41 |
-
|
42 |
-
def save_gif(pils, save_path, df=False):
|
43 |
-
# save a list of PIL.Image to gif
|
44 |
-
spf = 4000 / len(pils)
|
45 |
-
os.makedirs(os.path.dirname(save_path), exist_ok=True)
|
46 |
-
pils[0].save(save_path, format="GIF", save_all=True, append_images=pils[1:], duration=spf, loop=0)
|
47 |
-
return save_path
|
48 |
-
|
49 |
-
|
50 |
-
class Image2Views():
|
51 |
-
def __init__(self, device="cuda:0", use_lite=False, save_memory=False):
|
52 |
-
self.device = device
|
53 |
-
if use_lite:
|
54 |
-
self.pipe = Hunyuan3d_MVD_Lite_Pipeline.from_pretrained(
|
55 |
-
"./weights/mvd_lite",
|
56 |
-
torch_dtype = torch.float16,
|
57 |
-
use_safetensors = True,
|
58 |
-
)
|
59 |
-
else:
|
60 |
-
self.pipe = HunYuan3D_MVD_Std_Pipeline.from_pretrained(
|
61 |
-
"./weights/mvd_std",
|
62 |
-
torch_dtype = torch.float16,
|
63 |
-
use_safetensors = True,
|
64 |
-
)
|
65 |
-
self.pipe = self.pipe.to(device)
|
66 |
-
self.order = [0, 1, 2, 3, 4, 5] if use_lite else [0, 2, 4, 5, 3, 1]
|
67 |
-
self.save_memory = save_memory
|
68 |
-
set_parameter_grad_false(self.pipe.unet)
|
69 |
-
print('image2views unet model', get_parameter_number(self.pipe.unet))
|
70 |
-
|
71 |
-
@torch.no_grad()
|
72 |
-
@timing_decorator("image to views")
|
73 |
-
@auto_amp_inference
|
74 |
-
def __call__(self, *args, **kwargs):
|
75 |
-
if self.save_memory:
|
76 |
-
self.pipe = self.pipe.to(self.device)
|
77 |
-
torch.cuda.empty_cache()
|
78 |
-
res = self.call(*args, **kwargs)
|
79 |
-
self.pipe = self.pipe.to("cpu")
|
80 |
-
else:
|
81 |
-
res = self.call(*args, **kwargs)
|
82 |
-
torch.cuda.empty_cache()
|
83 |
-
return res
|
84 |
-
|
85 |
-
def call(self, pil_img, seed=0, steps=50, guidance_scale=2.0):
|
86 |
-
seed_everything(seed)
|
87 |
-
generator = torch.Generator(device=self.device)
|
88 |
-
res_img = self.pipe(pil_img,
|
89 |
-
num_inference_steps=steps,
|
90 |
-
guidance_scale=guidance_scale,
|
91 |
-
generat=generator).images
|
92 |
-
show_image = rearrange(np.asarray(res_img[0], dtype=np.uint8), '(n h) (m w) c -> (n m) h w c', n=3, m=2)
|
93 |
-
pils = [res_img[1]]+[Image.fromarray(show_image[idx]) for idx in self.order]
|
94 |
-
torch.cuda.empty_cache()
|
95 |
-
return res_img, pils
|
96 |
-
|
97 |
-
|
98 |
-
if __name__ == "__main__":
|
99 |
-
import argparse
|
100 |
-
|
101 |
-
def get_args():
|
102 |
-
parser = argparse.ArgumentParser()
|
103 |
-
parser.add_argument("--rgba_path", type=str, required=True)
|
104 |
-
parser.add_argument("--output_views_path", type=str, required=True)
|
105 |
-
parser.add_argument("--output_cond_path", type=str, required=True)
|
106 |
-
parser.add_argument("--seed", default=0, type=int)
|
107 |
-
parser.add_argument("--steps", default=50, type=int)
|
108 |
-
parser.add_argument("--device", default="cuda:0", type=str)
|
109 |
-
parser.add_argument("--use_lite", default='false', type=str)
|
110 |
-
return parser.parse_args()
|
111 |
-
|
112 |
-
args = get_args()
|
113 |
-
|
114 |
-
args.use_lite = str_to_bool(args.use_lite)
|
115 |
-
|
116 |
-
rgba_pil = Image.open(args.rgba_path)
|
117 |
-
|
118 |
-
assert rgba_pil.mode == "RGBA", "rgba_pil must be RGBA mode"
|
119 |
-
|
120 |
-
model = Image2Views(device=args.device, use_lite=args.use_lite)
|
121 |
-
|
122 |
-
(views_pil, cond), _ = model(rgba_pil, seed=args.seed, steps=args.steps)
|
123 |
-
|
124 |
-
views_pil.save(args.output_views_path)
|
125 |
-
cond.save(args.output_cond_path)
|
126 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
infer/.ipynb_checkpoints/removebg-checkpoint.py
DELETED
@@ -1,101 +0,0 @@
|
|
1 |
-
import os, sys
|
2 |
-
sys.path.insert(0, f"{os.path.dirname(os.path.dirname(os.path.abspath(__file__)))}")
|
3 |
-
|
4 |
-
import numpy as np
|
5 |
-
from PIL import Image
|
6 |
-
from rembg import remove, new_session
|
7 |
-
from infer.utils import timing_decorator
|
8 |
-
|
9 |
-
class Removebg():
|
10 |
-
def __init__(self, name="u2net"):
|
11 |
-
self.session = new_session(name)
|
12 |
-
|
13 |
-
@timing_decorator("remove background")
|
14 |
-
def __call__(self, rgb_maybe, force=True):
|
15 |
-
'''
|
16 |
-
args:
|
17 |
-
rgb_maybe: PIL.Image, with RGB mode or RGBA mode
|
18 |
-
force: bool, if input is RGBA mode, covert to RGB then remove bg
|
19 |
-
return:
|
20 |
-
rgba_img: PIL.Image, with RGBA mode
|
21 |
-
'''
|
22 |
-
if rgb_maybe.mode == "RGBA":
|
23 |
-
if force:
|
24 |
-
rgb_maybe = rgb_maybe.convert("RGB")
|
25 |
-
rgba_img = remove(rgb_maybe, session=self.session)
|
26 |
-
else:
|
27 |
-
rgba_img = rgb_maybe
|
28 |
-
else:
|
29 |
-
rgba_img = remove(rgb_maybe, session=self.session)
|
30 |
-
|
31 |
-
rgba_img = white_out_background(rgba_img)
|
32 |
-
|
33 |
-
rgba_img = preprocess(rgba_img)
|
34 |
-
|
35 |
-
return rgba_img
|
36 |
-
|
37 |
-
|
38 |
-
def white_out_background(pil_img):
|
39 |
-
data = pil_img.getdata()
|
40 |
-
new_data = []
|
41 |
-
for r, g, b, a in data:
|
42 |
-
if a < 16: # background
|
43 |
-
new_data.append((255, 255, 255, 0)) # full white color
|
44 |
-
else:
|
45 |
-
is_white = (r>235) and (g>235) and (b>235)
|
46 |
-
new_r = 235 if is_white else r
|
47 |
-
new_g = 235 if is_white else g
|
48 |
-
new_b = 235 if is_white else b
|
49 |
-
new_data.append((new_r, new_g, new_b, a))
|
50 |
-
pil_img.putdata(new_data)
|
51 |
-
return pil_img
|
52 |
-
|
53 |
-
def preprocess(rgba_img, size=(512,512), ratio=1.15):
|
54 |
-
image = np.asarray(rgba_img)
|
55 |
-
rgb, alpha = image[:,:,:3] / 255., image[:,:,3:] / 255.
|
56 |
-
|
57 |
-
# crop
|
58 |
-
coords = np.nonzero(alpha > 0.1)
|
59 |
-
x_min, x_max = coords[0].min(), coords[0].max()
|
60 |
-
y_min, y_max = coords[1].min(), coords[1].max()
|
61 |
-
rgb = (rgb[x_min:x_max, y_min:y_max, :] * 255).astype("uint8")
|
62 |
-
alpha = (alpha[x_min:x_max, y_min:y_max, 0] * 255).astype("uint8")
|
63 |
-
|
64 |
-
# padding
|
65 |
-
h, w = rgb.shape[:2]
|
66 |
-
resize_side = int(max(h, w) * ratio)
|
67 |
-
pad_h, pad_w = resize_side - h, resize_side - w
|
68 |
-
start_h, start_w = pad_h // 2, pad_w // 2
|
69 |
-
new_rgb = np.ones((resize_side, resize_side, 3), dtype=np.uint8) * 255
|
70 |
-
new_alpha = np.zeros((resize_side, resize_side), dtype=np.uint8)
|
71 |
-
new_rgb[start_h:start_h + h, start_w:start_w + w] = rgb
|
72 |
-
new_alpha[start_h:start_h + h, start_w:start_w + w] = alpha
|
73 |
-
rgba_array = np.concatenate((new_rgb, new_alpha[:,:,None]), axis=-1)
|
74 |
-
|
75 |
-
rgba_image = Image.fromarray(rgba_array, 'RGBA')
|
76 |
-
rgba_image = rgba_image.resize(size)
|
77 |
-
return rgba_image
|
78 |
-
|
79 |
-
|
80 |
-
if __name__ == "__main__":
|
81 |
-
|
82 |
-
import argparse
|
83 |
-
|
84 |
-
def get_args():
|
85 |
-
parser = argparse.ArgumentParser()
|
86 |
-
parser.add_argument("--rgb_path", type=str, required=True)
|
87 |
-
parser.add_argument("--output_rgba_path", type=str, required=True)
|
88 |
-
parser.add_argument("--force", default=False, action="store_true")
|
89 |
-
return parser.parse_args()
|
90 |
-
|
91 |
-
args = get_args()
|
92 |
-
|
93 |
-
rgb_maybe = Image.open(args.rgb_path)
|
94 |
-
|
95 |
-
model = Removebg()
|
96 |
-
|
97 |
-
rgba_pil = model(rgb_maybe, args.force)
|
98 |
-
|
99 |
-
rgba_pil.save(args.output_rgba_path)
|
100 |
-
|
101 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
infer/.ipynb_checkpoints/text_to_image-checkpoint.py
DELETED
@@ -1,105 +0,0 @@
|
|
1 |
-
# Open Source Model Licensed under the Apache License Version 2.0
|
2 |
-
# and Other Licenses of the Third-Party Components therein:
|
3 |
-
# The below Model in this distribution may have been modified by THL A29 Limited
|
4 |
-
# ("Tencent Modifications"). All Tencent Modifications are Copyright (C) 2024 THL A29 Limited.
|
5 |
-
|
6 |
-
# Copyright (C) 2024 THL A29 Limited, a Tencent company. All rights reserved.
|
7 |
-
# The below software and/or models in this distribution may have been
|
8 |
-
# modified by THL A29 Limited ("Tencent Modifications").
|
9 |
-
# All Tencent Modifications are Copyright (C) THL A29 Limited.
|
10 |
-
|
11 |
-
# Hunyuan 3D is licensed under the TENCENT HUNYUAN NON-COMMERCIAL LICENSE AGREEMENT
|
12 |
-
# except for the third-party components listed below.
|
13 |
-
# Hunyuan 3D does not impose any additional limitations beyond what is outlined
|
14 |
-
# in the repsective licenses of these third-party components.
|
15 |
-
# Users must comply with all terms and conditions of original licenses of these third-party
|
16 |
-
# components and must ensure that the usage of the third party components adheres to
|
17 |
-
# all relevant laws and regulations.
|
18 |
-
|
19 |
-
# For avoidance of doubts, Hunyuan 3D means the large language models and
|
20 |
-
# their software and algorithms, including trained model weights, parameters (including
|
21 |
-
# optimizer states), machine-learning model code, inference-enabling code, training-enabling code,
|
22 |
-
# fine-tuning enabling code and other elements of the foregoing made publicly available
|
23 |
-
# by Tencent in accordance with TENCENT HUNYUAN COMMUNITY LICENSE AGREEMENT.
|
24 |
-
import os , sys
|
25 |
-
sys.path.insert(0, f"{os.path.dirname(os.path.dirname(os.path.abspath(__file__)))}")
|
26 |
-
|
27 |
-
import torch
|
28 |
-
from diffusers import HunyuanDiTPipeline, AutoPipelineForText2Image
|
29 |
-
|
30 |
-
from infer.utils import seed_everything, timing_decorator, auto_amp_inference
|
31 |
-
from infer.utils import get_parameter_number, set_parameter_grad_false
|
32 |
-
|
33 |
-
|
34 |
-
class Text2Image():
|
35 |
-
def __init__(self, pretrain="weights/hunyuanDiT", device="cuda:0", save_memory=None):
|
36 |
-
'''
|
37 |
-
save_memory: if GPU memory is low, can set it
|
38 |
-
'''
|
39 |
-
self.save_memory = save_memory
|
40 |
-
self.device = device
|
41 |
-
self.pipe = AutoPipelineForText2Image.from_pretrained(
|
42 |
-
pretrain,
|
43 |
-
torch_dtype = torch.float16,
|
44 |
-
enable_pag = True,
|
45 |
-
pag_applied_layers = ["blocks.(16|17|18|19)"]
|
46 |
-
)
|
47 |
-
set_parameter_grad_false(self.pipe.transformer)
|
48 |
-
print('text2image transformer model', get_parameter_number(self.pipe.transformer))
|
49 |
-
if not save_memory:
|
50 |
-
self.pipe = self.pipe.to(device)
|
51 |
-
self.neg_txt = "文本,特写,裁剪,出框,最差质量,低质量,JPEG伪影,PGLY,重复,病态,残缺,多余的手指,变异的手," \
|
52 |
-
"画得不好的手,画得不好的脸,变异,畸形,模糊,脱水,糟糕的解剖学,糟糕的比例,多余的肢体,克隆的脸," \
|
53 |
-
"毁容,恶心的比例,畸形的肢体,缺失的手臂,缺失的腿,额外的手臂,额外的腿,融合的手指,手指太多,长脖子"
|
54 |
-
|
55 |
-
@torch.no_grad()
|
56 |
-
@timing_decorator('text to image')
|
57 |
-
@auto_amp_inference
|
58 |
-
def __call__(self, *args, **kwargs):
|
59 |
-
if self.save_memory:
|
60 |
-
self.pipe = self.pipe.to(self.device)
|
61 |
-
torch.cuda.empty_cache()
|
62 |
-
res = self.call(*args, **kwargs)
|
63 |
-
self.pipe = self.pipe.to("cpu")
|
64 |
-
else:
|
65 |
-
res = self.call(*args, **kwargs)
|
66 |
-
torch.cuda.empty_cache()
|
67 |
-
return res
|
68 |
-
|
69 |
-
def call(self, prompt, seed=0, steps=25):
|
70 |
-
'''
|
71 |
-
args:
|
72 |
-
prompr: str
|
73 |
-
seed: int
|
74 |
-
steps: int
|
75 |
-
return:
|
76 |
-
rgb: PIL.Image
|
77 |
-
'''
|
78 |
-
print("prompt is:", prompt)
|
79 |
-
prompt = prompt + ",白色背景,3D风格,最佳质量"
|
80 |
-
seed_everything(seed)
|
81 |
-
generator = torch.Generator(device=self.device)
|
82 |
-
if seed is not None: generator = generator.manual_seed(int(seed))
|
83 |
-
rgb = self.pipe(prompt=prompt, negative_prompt=self.neg_txt, num_inference_steps=steps,
|
84 |
-
pag_scale=1.3, width=1024, height=1024, generator=generator, return_dict=False)[0][0]
|
85 |
-
torch.cuda.empty_cache()
|
86 |
-
return rgb
|
87 |
-
|
88 |
-
if __name__ == "__main__":
|
89 |
-
import argparse
|
90 |
-
|
91 |
-
def get_args():
|
92 |
-
parser = argparse.ArgumentParser()
|
93 |
-
parser.add_argument("--text2image_path", default="weights/hunyuanDiT", type=str)
|
94 |
-
parser.add_argument("--text_prompt", default="", type=str)
|
95 |
-
parser.add_argument("--output_img_path", default="./outputs/test/img.jpg", type=str)
|
96 |
-
parser.add_argument("--device", default="cuda:0", type=str)
|
97 |
-
parser.add_argument("--seed", default=0, type=int)
|
98 |
-
parser.add_argument("--steps", default=25, type=int)
|
99 |
-
return parser.parse_args()
|
100 |
-
args = get_args()
|
101 |
-
|
102 |
-
text2image_model = Text2Image(device=args.device)
|
103 |
-
rgb_img = text2image_model(args.text_prompt, seed=args.seed, steps=args.steps)
|
104 |
-
rgb_img.save(args.output_img_path)
|
105 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
infer/.ipynb_checkpoints/utils-checkpoint.py
DELETED
@@ -1,87 +0,0 @@
|
|
1 |
-
# Open Source Model Licensed under the Apache License Version 2.0
|
2 |
-
# and Other Licenses of the Third-Party Components therein:
|
3 |
-
# The below Model in this distribution may have been modified by THL A29 Limited
|
4 |
-
# ("Tencent Modifications"). All Tencent Modifications are Copyright (C) 2024 THL A29 Limited.
|
5 |
-
|
6 |
-
# Copyright (C) 2024 THL A29 Limited, a Tencent company. All rights reserved.
|
7 |
-
# The below software and/or models in this distribution may have been
|
8 |
-
# modified by THL A29 Limited ("Tencent Modifications").
|
9 |
-
# All Tencent Modifications are Copyright (C) THL A29 Limited.
|
10 |
-
|
11 |
-
# Hunyuan 3D is licensed under the TENCENT HUNYUAN NON-COMMERCIAL LICENSE AGREEMENT
|
12 |
-
# except for the third-party components listed below.
|
13 |
-
# Hunyuan 3D does not impose any additional limitations beyond what is outlined
|
14 |
-
# in the repsective licenses of these third-party components.
|
15 |
-
# Users must comply with all terms and conditions of original licenses of these third-party
|
16 |
-
# components and must ensure that the usage of the third party components adheres to
|
17 |
-
# all relevant laws and regulations.
|
18 |
-
|
19 |
-
# For avoidance of doubts, Hunyuan 3D means the large language models and
|
20 |
-
# their software and algorithms, including trained model weights, parameters (including
|
21 |
-
# optimizer states), machine-learning model code, inference-enabling code, training-enabling code,
|
22 |
-
# fine-tuning enabling code and other elements of the foregoing made publicly available
|
23 |
-
# by Tencent in accordance with TENCENT HUNYUAN COMMUNITY LICENSE AGREEMENT.
|
24 |
-
|
25 |
-
import os
|
26 |
-
import time
|
27 |
-
import random
|
28 |
-
import numpy as np
|
29 |
-
import torch
|
30 |
-
from torch.cuda.amp import autocast, GradScaler
|
31 |
-
from functools import wraps
|
32 |
-
|
33 |
-
def seed_everything(seed):
|
34 |
-
'''
|
35 |
-
seed everthing
|
36 |
-
'''
|
37 |
-
random.seed(seed)
|
38 |
-
np.random.seed(seed)
|
39 |
-
torch.manual_seed(seed)
|
40 |
-
os.environ["PL_GLOBAL_SEED"] = str(seed)
|
41 |
-
|
42 |
-
def timing_decorator(category: str):
|
43 |
-
'''
|
44 |
-
timing_decorator: record time
|
45 |
-
'''
|
46 |
-
def decorator(func):
|
47 |
-
func.call_count = 0
|
48 |
-
@wraps(func)
|
49 |
-
def wrapper(*args, **kwargs):
|
50 |
-
start_time = time.time()
|
51 |
-
result = func(*args, **kwargs)
|
52 |
-
end_time = time.time()
|
53 |
-
elapsed_time = end_time - start_time
|
54 |
-
func.call_count += 1
|
55 |
-
print(f"[HunYuan3D]-[{category}], cost time: {elapsed_time:.4f}s") # huiwen
|
56 |
-
return result
|
57 |
-
return wrapper
|
58 |
-
return decorator
|
59 |
-
|
60 |
-
def auto_amp_inference(func):
|
61 |
-
'''
|
62 |
-
with torch.cuda.amp.autocast()"
|
63 |
-
xxx
|
64 |
-
'''
|
65 |
-
@wraps(func)
|
66 |
-
def wrapper(*args, **kwargs):
|
67 |
-
with autocast():
|
68 |
-
output = func(*args, **kwargs)
|
69 |
-
return output
|
70 |
-
return wrapper
|
71 |
-
|
72 |
-
def get_parameter_number(model):
|
73 |
-
total_num = sum(p.numel() for p in model.parameters())
|
74 |
-
trainable_num = sum(p.numel() for p in model.parameters() if p.requires_grad)
|
75 |
-
return {'Total': total_num, 'Trainable': trainable_num}
|
76 |
-
|
77 |
-
def set_parameter_grad_false(model):
|
78 |
-
for p in model.parameters():
|
79 |
-
p.requires_grad = False
|
80 |
-
|
81 |
-
def str_to_bool(s):
|
82 |
-
if s.lower() in ['true', 't', 'yes', 'y', '1']:
|
83 |
-
return True
|
84 |
-
elif s.lower() in ['false', 'f', 'no', 'n', '0']:
|
85 |
-
return False
|
86 |
-
else:
|
87 |
-
raise f"bool arg must one of ['true', 't', 'yes', 'y', '1', 'false', 'f', 'no', 'n', '0']"
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
infer/.ipynb_checkpoints/views_to_mesh-checkpoint.py
DELETED
@@ -1,154 +0,0 @@
|
|
1 |
-
# Open Source Model Licensed under the Apache License Version 2.0
|
2 |
-
# and Other Licenses of the Third-Party Components therein:
|
3 |
-
# The below Model in this distribution may have been modified by THL A29 Limited
|
4 |
-
# ("Tencent Modifications"). All Tencent Modifications are Copyright (C) 2024 THL A29 Limited.
|
5 |
-
|
6 |
-
# Copyright (C) 2024 THL A29 Limited, a Tencent company. All rights reserved.
|
7 |
-
# The below software and/or models in this distribution may have been
|
8 |
-
# modified by THL A29 Limited ("Tencent Modifications").
|
9 |
-
# All Tencent Modifications are Copyright (C) THL A29 Limited.
|
10 |
-
|
11 |
-
# Hunyuan 3D is licensed under the TENCENT HUNYUAN NON-COMMERCIAL LICENSE AGREEMENT
|
12 |
-
# except for the third-party components listed below.
|
13 |
-
# Hunyuan 3D does not impose any additional limitations beyond what is outlined
|
14 |
-
# in the repsective licenses of these third-party components.
|
15 |
-
# Users must comply with all terms and conditions of original licenses of these third-party
|
16 |
-
# components and must ensure that the usage of the third party components adheres to
|
17 |
-
# all relevant laws and regulations.
|
18 |
-
|
19 |
-
# For avoidance of doubts, Hunyuan 3D means the large language models and
|
20 |
-
# their software and algorithms, including trained model weights, parameters (including
|
21 |
-
# optimizer states), machine-learning model code, inference-enabling code, training-enabling code,
|
22 |
-
# fine-tuning enabling code and other elements of the foregoing made publicly available
|
23 |
-
# by Tencent in accordance with TENCENT HUNYUAN COMMUNITY LICENSE AGREEMENT.
|
24 |
-
|
25 |
-
import os, sys
|
26 |
-
sys.path.insert(0, f"{os.path.dirname(os.path.dirname(os.path.abspath(__file__)))}")
|
27 |
-
|
28 |
-
import time
|
29 |
-
import torch
|
30 |
-
import random
|
31 |
-
import numpy as np
|
32 |
-
from PIL import Image
|
33 |
-
from einops import rearrange
|
34 |
-
from PIL import Image, ImageSequence
|
35 |
-
|
36 |
-
from infer.utils import seed_everything, timing_decorator, auto_amp_inference
|
37 |
-
from infer.utils import get_parameter_number, set_parameter_grad_false, str_to_bool
|
38 |
-
from svrm.predictor import MV23DPredictor
|
39 |
-
|
40 |
-
|
41 |
-
class Views2Mesh():
|
42 |
-
def __init__(self, mv23d_cfg_path, mv23d_ckt_path,
|
43 |
-
device="cuda:0", use_lite=False, save_memory=False):
|
44 |
-
'''
|
45 |
-
mv23d_cfg_path: config yaml file
|
46 |
-
mv23d_ckt_path: path to ckpt
|
47 |
-
use_lite: lite version
|
48 |
-
save_memory: cpu auto
|
49 |
-
'''
|
50 |
-
self.mv23d_predictor = MV23DPredictor(mv23d_ckt_path, mv23d_cfg_path, device=device)
|
51 |
-
self.mv23d_predictor.model.eval()
|
52 |
-
self.order = [0, 1, 2, 3, 4, 5] if use_lite else [0, 2, 4, 5, 3, 1]
|
53 |
-
self.device = device
|
54 |
-
self.save_memory = save_memory
|
55 |
-
set_parameter_grad_false(self.mv23d_predictor.model)
|
56 |
-
print('view2mesh model', get_parameter_number(self.mv23d_predictor.model))
|
57 |
-
|
58 |
-
@torch.no_grad()
|
59 |
-
@timing_decorator("views to mesh")
|
60 |
-
@auto_amp_inference
|
61 |
-
def __call__(self, *args, **kwargs):
|
62 |
-
if self.save_memory:
|
63 |
-
self.mv23d_predictor.model = self.mv23d_predictor.model.to(self.device)
|
64 |
-
torch.cuda.empty_cache()
|
65 |
-
res = self.call(*args, **kwargs)
|
66 |
-
self.mv23d_predictor.model = self.mv23d_predictor.model.to("cpu")
|
67 |
-
else:
|
68 |
-
res = self.call(*args, **kwargs)
|
69 |
-
torch.cuda.empty_cache()
|
70 |
-
return res
|
71 |
-
|
72 |
-
def call(
|
73 |
-
self,
|
74 |
-
views_pil=None,
|
75 |
-
cond_pil=None,
|
76 |
-
gif_pil=None,
|
77 |
-
seed=0,
|
78 |
-
target_face_count = 10000,
|
79 |
-
do_texture_mapping = True,
|
80 |
-
save_folder='./outputs/test'
|
81 |
-
):
|
82 |
-
'''
|
83 |
-
can set views_pil, cond_pil simutaously or set gif_pil only
|
84 |
-
seed: int
|
85 |
-
target_face_count: int
|
86 |
-
save_folder: path to save mesh files
|
87 |
-
'''
|
88 |
-
save_dir = save_folder
|
89 |
-
os.makedirs(save_dir, exist_ok=True)
|
90 |
-
|
91 |
-
if views_pil is not None and cond_pil is not None:
|
92 |
-
show_image = rearrange(np.asarray(views_pil, dtype=np.uint8),
|
93 |
-
'(n h) (m w) c -> (n m) h w c', n=3, m=2)
|
94 |
-
views = [Image.fromarray(show_image[idx]) for idx in self.order]
|
95 |
-
image_list = [cond_pil]+ views
|
96 |
-
image_list = [img.convert('RGB') for img in image_list]
|
97 |
-
elif gif_pil is not None:
|
98 |
-
image_list = [img.convert('RGB') for img in ImageSequence.Iterator(gif_pil)]
|
99 |
-
|
100 |
-
image_input = image_list[0]
|
101 |
-
image_list = image_list[1:] + image_list[:1]
|
102 |
-
|
103 |
-
seed_everything(seed)
|
104 |
-
self.mv23d_predictor.predict(
|
105 |
-
image_list,
|
106 |
-
save_dir = save_dir,
|
107 |
-
image_input = image_input,
|
108 |
-
target_face_count = target_face_count,
|
109 |
-
do_texture_mapping = do_texture_mapping
|
110 |
-
)
|
111 |
-
torch.cuda.empty_cache()
|
112 |
-
return save_dir
|
113 |
-
|
114 |
-
|
115 |
-
if __name__ == "__main__":
|
116 |
-
|
117 |
-
import argparse
|
118 |
-
|
119 |
-
def get_args():
|
120 |
-
parser = argparse.ArgumentParser()
|
121 |
-
parser.add_argument("--views_path", type=str, required=True)
|
122 |
-
parser.add_argument("--cond_path", type=str, required=True)
|
123 |
-
parser.add_argument("--save_folder", default="./outputs/test/", type=str)
|
124 |
-
parser.add_argument("--mv23d_cfg_path", default="./svrm/configs/svrm.yaml", type=str)
|
125 |
-
parser.add_argument("--mv23d_ckt_path", default="weights/svrm/svrm.safetensors", type=str)
|
126 |
-
parser.add_argument("--max_faces_num", default=90000, type=int,
|
127 |
-
help="max num of face, suggest 90000 for effect, 10000 for speed")
|
128 |
-
parser.add_argument("--device", default="cuda:0", type=str)
|
129 |
-
parser.add_argument("--use_lite", default='false', type=str)
|
130 |
-
parser.add_argument("--do_texture_mapping", default='false', type=str)
|
131 |
-
|
132 |
-
return parser.parse_args()
|
133 |
-
|
134 |
-
args = get_args()
|
135 |
-
args.use_lite = str_to_bool(args.use_lite)
|
136 |
-
args.do_texture_mapping = str_to_bool(args.do_texture_mapping)
|
137 |
-
|
138 |
-
views = Image.open(args.views_path)
|
139 |
-
cond = Image.open(args.cond_path)
|
140 |
-
|
141 |
-
views_to_mesh_model = Views2Mesh(
|
142 |
-
args.mv23d_cfg_path,
|
143 |
-
args.mv23d_ckt_path,
|
144 |
-
device = args.device,
|
145 |
-
use_lite = args.use_lite
|
146 |
-
)
|
147 |
-
|
148 |
-
views_to_mesh_model(
|
149 |
-
views, cond, 0,
|
150 |
-
target_face_count = args.max_faces_num,
|
151 |
-
save_folder = args.save_folder,
|
152 |
-
do_texture_mapping = args.do_texture_mapping
|
153 |
-
)
|
154 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|