|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
import os , sys |
|
sys.path.insert(0, f"{os.path.dirname(os.path.dirname(os.path.abspath(__file__)))}") |
|
|
|
import torch |
|
from diffusers import HunyuanDiTPipeline, AutoPipelineForText2Image |
|
|
|
from infer.utils import seed_everything, timing_decorator, auto_amp_inference |
|
from infer.utils import get_parameter_number, set_parameter_grad_false |
|
|
|
|
|
class Text2Image(): |
|
def __init__(self, pretrain="weights/hunyuanDiT", device="cuda:0", save_memory=None): |
|
''' |
|
save_memory: if GPU memory is low, can set it |
|
''' |
|
self.save_memory = save_memory |
|
self.device = device |
|
self.pipe = AutoPipelineForText2Image.from_pretrained( |
|
pretrain, |
|
torch_dtype = torch.float16, |
|
enable_pag = True, |
|
pag_applied_layers = ["blocks.(16|17|18|19)"] |
|
) |
|
set_parameter_grad_false(self.pipe.transformer) |
|
print('text2image transformer model', get_parameter_number(self.pipe.transformer)) |
|
if not save_memory: |
|
self.pipe = self.pipe.to(device) |
|
self.neg_txt = "文本,特写,裁剪,出框,最差质量,低质量,JPEG伪影,PGLY,重复,病态,残缺,多余的手指,变异的手," \ |
|
"画得不好的手,画得不好的脸,变异,畸形,模糊,脱水,糟糕的解剖学,糟糕的比例,多余的肢体,克隆的脸," \ |
|
"毁容,恶心的比例,畸形的肢体,缺失的手臂,缺失的腿,额外的手臂,额外的腿,融合的手指,手指太多,长脖子" |
|
|
|
@torch.no_grad() |
|
@timing_decorator('text to image') |
|
@auto_amp_inference |
|
def __call__(self, *args, **kwargs): |
|
if self.save_memory: |
|
self.pipe = self.pipe.to(self.device) |
|
torch.cuda.empty_cache() |
|
res = self.call(*args, **kwargs) |
|
self.pipe = self.pipe.to("cpu") |
|
else: |
|
res = self.call(*args, **kwargs) |
|
torch.cuda.empty_cache() |
|
return res |
|
|
|
def call(self, prompt, seed=0, steps=25): |
|
''' |
|
args: |
|
prompr: str |
|
seed: int |
|
steps: int |
|
return: |
|
rgb: PIL.Image |
|
''' |
|
print("prompt is:", prompt) |
|
prompt = prompt + ",白色背景,3D风格,最佳质量" |
|
seed_everything(seed) |
|
generator = torch.Generator(device=self.device) |
|
if seed is not None: generator = generator.manual_seed(int(seed)) |
|
rgb = self.pipe(prompt=prompt, negative_prompt=self.neg_txt, num_inference_steps=steps, |
|
pag_scale=1.3, width=1024, height=1024, generator=generator, return_dict=False)[0][0] |
|
torch.cuda.empty_cache() |
|
return rgb |
|
|
|
if __name__ == "__main__": |
|
import argparse |
|
|
|
def get_args(): |
|
parser = argparse.ArgumentParser() |
|
parser.add_argument("--text2image_path", default="weights/hunyuanDiT", type=str) |
|
parser.add_argument("--text_prompt", default="", type=str) |
|
parser.add_argument("--output_img_path", default="./outputs/test/img.jpg", type=str) |
|
parser.add_argument("--device", default="cuda:0", type=str) |
|
parser.add_argument("--seed", default=0, type=int) |
|
parser.add_argument("--steps", default=25, type=int) |
|
return parser.parse_args() |
|
args = get_args() |
|
|
|
text2image_model = Text2Image(device=args.device) |
|
rgb_img = text2image_model(args.text_prompt, seed=args.seed, steps=args.steps) |
|
rgb_img.save(args.output_img_path) |
|
|