|
from inspect import isfunction |
|
import math |
|
import torch |
|
import torch.nn.functional as F |
|
from torch import nn, einsum |
|
from einops import rearrange, repeat |
|
import numpy as np |
|
|
|
FLASH_IS_AVAILABLE = XFORMERS_IS_AVAILBLE = False |
|
try: |
|
from flash_attn import flash_attn_qkvpacked_func, flash_attn_func |
|
FLASH_IS_AVAILABLE = True |
|
except: |
|
try: |
|
import xformers |
|
import xformers.ops |
|
XFORMERS_IS_AVAILBLE = True |
|
except: |
|
pass |
|
|
|
def exists(val): |
|
return val is not None |
|
|
|
|
|
def uniq(arr): |
|
return{el: True for el in arr}.keys() |
|
|
|
|
|
def default(val, d): |
|
if exists(val): |
|
return val |
|
return d() if isfunction(d) else d |
|
|
|
|
|
def max_neg_value(t): |
|
return -torch.finfo(t.dtype).max |
|
|
|
|
|
def init_(tensor): |
|
dim = tensor.shape[-1] |
|
std = 1 / math.sqrt(dim) |
|
tensor.uniform_(-std, std) |
|
return tensor |
|
|
|
def checkpoint(func, inputs, params, flag): |
|
""" |
|
Evaluate a function without caching intermediate activations, allowing for |
|
reduced memory at the expense of extra compute in the backward pass. |
|
:param func: the function to evaluate. |
|
:param inputs: the argument sequence to pass to `func`. |
|
:param params: a sequence of parameters `func` depends on but does not |
|
explicitly take as arguments. |
|
:param flag: if False, disable gradient checkpointing. |
|
""" |
|
if flag: |
|
args = tuple(inputs) + tuple(params) |
|
return CheckpointFunction.apply(func, len(inputs), *args) |
|
else: |
|
return func(*inputs) |
|
|
|
|
|
class CheckpointFunction(torch.autograd.Function): |
|
@staticmethod |
|
def forward(ctx, run_function, length, *args): |
|
ctx.run_function = run_function |
|
ctx.input_tensors = list(args[:length]) |
|
ctx.input_params = list(args[length:]) |
|
|
|
with torch.no_grad(): |
|
output_tensors = ctx.run_function(*ctx.input_tensors) |
|
return output_tensors |
|
|
|
@staticmethod |
|
def backward(ctx, *output_grads): |
|
ctx.input_tensors = [x.detach().requires_grad_(True) for x in ctx.input_tensors] |
|
with torch.enable_grad(): |
|
|
|
|
|
|
|
shallow_copies = [x.view_as(x) for x in ctx.input_tensors] |
|
output_tensors = ctx.run_function(*shallow_copies) |
|
input_grads = torch.autograd.grad( |
|
output_tensors, |
|
ctx.input_tensors + ctx.input_params, |
|
output_grads, |
|
allow_unused=True, |
|
) |
|
del ctx.input_tensors |
|
del ctx.input_params |
|
del output_tensors |
|
return (None, None) + input_grads |
|
|
|
|
|
|
|
class GEGLU(nn.Module): |
|
def __init__(self, dim_in, dim_out): |
|
super().__init__() |
|
self.proj = nn.Linear(dim_in, dim_out * 2) |
|
|
|
def forward(self, x): |
|
x, gate = self.proj(x).chunk(2, dim=-1) |
|
return x * F.gelu(gate) |
|
|
|
|
|
class FeedForward(nn.Module): |
|
def __init__(self, dim, dim_out=None, mult=4, glu=False, dropout=0.): |
|
super().__init__() |
|
inner_dim = int(dim * mult) |
|
dim_out = default(dim_out, dim) |
|
project_in = nn.Sequential( |
|
nn.Linear(dim, inner_dim), |
|
nn.GELU() |
|
) if not glu else GEGLU(dim, inner_dim) |
|
|
|
self.net = nn.Sequential( |
|
project_in, |
|
nn.Dropout(dropout), |
|
nn.Linear(inner_dim, dim_out) |
|
) |
|
|
|
def forward(self, x): |
|
return self.net(x) |
|
|
|
|
|
def zero_module(module): |
|
""" |
|
Zero out the parameters of a module and return it. |
|
""" |
|
for p in module.parameters(): |
|
p.detach().zero_() |
|
return module |
|
|
|
|
|
def Normalize(in_channels): |
|
return torch.nn.GroupNorm(num_groups=32, num_channels=in_channels, eps=1e-6, affine=True) |
|
|
|
|
|
class LinearAttention(nn.Module): |
|
def __init__(self, dim, heads=4, dim_head=32): |
|
super().__init__() |
|
self.heads = heads |
|
hidden_dim = dim_head * heads |
|
self.to_qkv = nn.Conv2d(dim, hidden_dim * 3, 1, bias = False) |
|
self.to_out = nn.Conv2d(hidden_dim, dim, 1) |
|
|
|
def forward(self, x): |
|
b, c, h, w = x.shape |
|
qkv = self.to_qkv(x) |
|
q, k, v = rearrange(qkv, 'b (qkv heads c) h w -> qkv b heads c (h w)', heads = self.heads, qkv=3) |
|
k = k.softmax(dim=-1) |
|
context = torch.einsum('bhdn,bhen->bhde', k, v) |
|
out = torch.einsum('bhde,bhdn->bhen', context, q) |
|
out = rearrange(out, 'b heads c (h w) -> b (heads c) h w', heads=self.heads, h=h, w=w) |
|
return self.to_out(out) |
|
|
|
|
|
class SpatialSelfAttention(nn.Module): |
|
def __init__(self, in_channels): |
|
super().__init__() |
|
self.in_channels = in_channels |
|
|
|
self.norm = Normalize(in_channels) |
|
self.q = torch.nn.Conv2d(in_channels, |
|
in_channels, |
|
kernel_size=1, |
|
stride=1, |
|
padding=0) |
|
self.k = torch.nn.Conv2d(in_channels, |
|
in_channels, |
|
kernel_size=1, |
|
stride=1, |
|
padding=0) |
|
self.v = torch.nn.Conv2d(in_channels, |
|
in_channels, |
|
kernel_size=1, |
|
stride=1, |
|
padding=0) |
|
self.proj_out = torch.nn.Conv2d(in_channels, |
|
in_channels, |
|
kernel_size=1, |
|
stride=1, |
|
padding=0) |
|
|
|
def forward(self, x): |
|
h_ = x |
|
h_ = self.norm(h_) |
|
q = self.q(h_) |
|
k = self.k(h_) |
|
v = self.v(h_) |
|
|
|
|
|
b,c,h,w = q.shape |
|
q = rearrange(q, 'b c h w -> b (h w) c') |
|
k = rearrange(k, 'b c h w -> b c (h w)') |
|
w_ = torch.einsum('bij,bjk->bik', q, k) |
|
|
|
w_ = w_ * (int(c)**(-0.5)) |
|
w_ = torch.nn.functional.softmax(w_, dim=2) |
|
|
|
|
|
v = rearrange(v, 'b c h w -> b c (h w)') |
|
w_ = rearrange(w_, 'b i j -> b j i') |
|
h_ = torch.einsum('bij,bjk->bik', v, w_) |
|
h_ = rearrange(h_, 'b c (h w) -> b c h w', h=h) |
|
h_ = self.proj_out(h_) |
|
|
|
return x+h_ |
|
|
|
|
|
class CrossAttention(nn.Module): |
|
def __init__(self, query_dim, context_dim=None, heads=8, dim_head=64, dropout=0.): |
|
super().__init__() |
|
inner_dim = dim_head * heads |
|
context_dim = default(context_dim, query_dim) |
|
self.scale = dim_head ** -0.5 |
|
self.heads = heads |
|
self.to_q = nn.Linear(query_dim, inner_dim, bias=False) |
|
self.to_k = nn.Linear(context_dim, inner_dim, bias=False) |
|
self.to_v = nn.Linear(context_dim, inner_dim, bias=False) |
|
|
|
self.to_out = nn.Sequential( |
|
nn.Linear(inner_dim, query_dim), |
|
nn.Dropout(dropout) |
|
) |
|
|
|
def forward(self, x, context=None, mask=None): |
|
h = self.heads |
|
q = self.to_q(x) |
|
context = default(context, x) |
|
k = self.to_k(context) |
|
v = self.to_v(context) |
|
q, k, v = map(lambda t: rearrange(t, 'b n (h d) -> (b h) n d', h=h), (q, k, v)) |
|
sim = einsum('b i d, b j d -> b i j', q, k) * self.scale |
|
if exists(mask): |
|
mask = rearrange(mask, 'b ... -> b (...)') |
|
max_neg_value = -torch.finfo(sim.dtype).max |
|
mask = repeat(mask, 'b j -> (b h) () j', h=h) |
|
sim.masked_fill_(~mask, max_neg_value) |
|
|
|
attn = sim.softmax(dim=-1) |
|
out = einsum('b i j, b j d -> b i d', attn, v) |
|
out = rearrange(out, '(b h) n d -> b n (h d)', h=h) |
|
return self.to_out(out) |
|
|
|
|
|
class FlashAttention(nn.Module): |
|
def __init__(self, query_dim, context_dim=None, heads=8, dim_head=64, dropout=0.): |
|
super().__init__() |
|
print(f"Setting up {self.__class__.__name__}. Query dim is {query_dim}, context_dim is {context_dim} and using " |
|
f"{heads} heads.") |
|
inner_dim = dim_head * heads |
|
context_dim = default(context_dim, query_dim) |
|
self.scale = dim_head ** -0.5 |
|
self.heads = heads |
|
self.dropout = dropout |
|
self.to_q = nn.Linear(query_dim, inner_dim, bias=False) |
|
self.to_k = nn.Linear(context_dim, inner_dim, bias=False) |
|
self.to_v = nn.Linear(context_dim, inner_dim, bias=False) |
|
self.to_out = nn.Sequential( |
|
nn.Linear(inner_dim, query_dim), |
|
nn.Dropout(dropout) |
|
) |
|
|
|
def forward(self, x, context=None, mask=None): |
|
context = default(context, x) |
|
h = self.heads |
|
dtype = torch.bfloat16 |
|
q = self.to_q(x).to(dtype) |
|
k = self.to_k(context).to(dtype) |
|
v = self.to_v(context).to(dtype) |
|
q, k, v = map(lambda t: rearrange(t, 'b n (h d) -> b n h d', h=h), (q, k, v)) |
|
out = flash_attn_func(q, k, v, dropout_p=self.dropout, softmax_scale=None, causal=False, window_size=(-1, -1)) |
|
out = rearrange(out, 'b n h d -> b n (h d)', h=h) |
|
return self.to_out(out.float()) |
|
|
|
class MemoryEfficientCrossAttention(nn.Module): |
|
|
|
def __init__(self, query_dim, context_dim=None, heads=8, dim_head=64, dropout=0.0): |
|
super().__init__() |
|
print(f"Setting up {self.__class__.__name__}. Query dim is {query_dim}, context_dim is {context_dim} and using " |
|
f"{heads} heads.") |
|
inner_dim = dim_head * heads |
|
context_dim = default(context_dim, query_dim) |
|
|
|
self.heads = heads |
|
self.dim_head = dim_head |
|
|
|
self.to_q = nn.Linear(query_dim, inner_dim, bias=False) |
|
self.to_k = nn.Linear(context_dim, inner_dim, bias=False) |
|
self.to_v = nn.Linear(context_dim, inner_dim, bias=False) |
|
|
|
self.to_out = nn.Sequential(nn.Linear(inner_dim, query_dim), nn.Dropout(dropout)) |
|
self.attention_op: Optional[Any] = None |
|
|
|
def forward(self, x, context=None, mask=None): |
|
q = self.to_q(x) |
|
context = default(context, x) |
|
k = self.to_k(context) |
|
v = self.to_v(context) |
|
|
|
b, _, _ = q.shape |
|
q, k, v = map( |
|
lambda t: t.unsqueeze(3) |
|
.reshape(b, t.shape[1], self.heads, self.dim_head) |
|
.permute(0, 2, 1, 3) |
|
.reshape(b * self.heads, t.shape[1], self.dim_head) |
|
.contiguous(), |
|
(q, k, v), |
|
) |
|
|
|
|
|
out = xformers.ops.memory_efficient_attention(q, k, v, attn_bias=None, op=self.attention_op) |
|
|
|
if exists(mask): |
|
raise NotImplementedError |
|
out = ( |
|
out.unsqueeze(0) |
|
.reshape(b, self.heads, out.shape[1], self.dim_head) |
|
.permute(0, 2, 1, 3) |
|
.reshape(b, out.shape[1], self.heads * self.dim_head) |
|
) |
|
return self.to_out(out) |
|
|
|
class BasicTransformerBlock(nn.Module): |
|
def __init__(self, dim, n_heads, d_head, dropout=0., context_dim=None, gated_ff=True, checkpoint=True, |
|
disable_self_attn=False): |
|
super().__init__() |
|
self.disable_self_attn = disable_self_attn |
|
self.attn1 = CrossAttention(query_dim=dim, heads=n_heads, dim_head=d_head, dropout=dropout, |
|
context_dim=context_dim if self.disable_self_attn else None) |
|
self.ff = FeedForward(dim, dropout=dropout, glu=gated_ff) |
|
self.attn2 = CrossAttention(query_dim=dim, context_dim=context_dim, |
|
heads=n_heads, dim_head=d_head, dropout=dropout) |
|
self.norm1 = Fp32LayerNorm(dim) |
|
self.norm2 = Fp32LayerNorm(dim) |
|
self.norm3 = Fp32LayerNorm(dim) |
|
self.checkpoint = checkpoint |
|
|
|
def forward(self, x, context=None): |
|
return checkpoint(self._forward, (x, context), self.parameters(), self.checkpoint) |
|
|
|
def _forward(self, x, context=None): |
|
x = self.attn1(self.norm1(x), context=context if self.disable_self_attn else None) + x |
|
x = self.attn2(self.norm2(x), context=context) + x |
|
x = self.ff(self.norm3(x)) + x |
|
return x |
|
|
|
ATTENTION_MODES = { |
|
"softmax": CrossAttention, |
|
"softmax-xformers": MemoryEfficientCrossAttention, |
|
"softmax-flash": FlashAttention |
|
} |
|
|
|
def modulate(x, shift, scale): |
|
return x * (1 + scale.unsqueeze(1)) + shift.unsqueeze(1) |
|
|
|
|
|
class Fp32LayerNorm(nn.LayerNorm): |
|
def __init__(self, *args, **kwargs): |
|
super().__init__(*args, **kwargs) |
|
def forward(self, x): |
|
return super().forward(x.float()).type(x.dtype) |
|
|
|
|
|
class AdaNorm(nn.Module): |
|
def __init__(self, dim): |
|
super().__init__() |
|
self.adaLN_modulation = nn.Sequential( |
|
nn.SiLU(), |
|
nn.Linear(dim, 2 * dim, bias=True) |
|
) |
|
self.norm = Fp32LayerNorm(dim, elementwise_affine=False, eps=1e-6) |
|
|
|
def forward(self, x, c): |
|
shift, scale = self.adaLN_modulation(c.float()).chunk(2, dim=1) |
|
x = modulate(self.norm(x), shift, scale) |
|
return x |
|
|
|
|
|
class BasicTransformerBlockLRM(nn.Module): |
|
def __init__(self, dim, n_heads, d_head, dropout=0., context_dim=None, gated_ff=True, \ |
|
checkpoint=True): |
|
super().__init__() |
|
|
|
attn_mode = "softmax-xformers" if XFORMERS_IS_AVAILBLE else "softmax" |
|
attn_mode = "softmax-flash" if FLASH_IS_AVAILABLE else attn_mode |
|
assert attn_mode in ATTENTION_MODES |
|
attn_cls = ATTENTION_MODES[attn_mode] |
|
|
|
self.attn1 = attn_cls(query_dim=dim, heads=n_heads, dim_head=d_head, dropout=dropout, \ |
|
context_dim=context_dim) |
|
self.attn2 = attn_cls(query_dim=dim, heads=n_heads, dim_head=d_head, dropout=dropout, \ |
|
context_dim=None) |
|
|
|
self.norm1 = Fp32LayerNorm(dim) |
|
self.norm2 = Fp32LayerNorm(dim) |
|
self.norm3 = Fp32LayerNorm(dim) |
|
|
|
self.ff = FeedForward(dim, dropout=dropout, glu=gated_ff) |
|
self.checkpoint = checkpoint |
|
|
|
def forward(self, x, context=None, cam_emb=None): |
|
return checkpoint(self._forward, (x, context), self.parameters(), self.checkpoint) |
|
|
|
|
|
def _forward(self, x, context=None, cam_emb=None): |
|
|
|
x = self.attn1(self.norm1(x), context=context) + x |
|
x = self.attn2(self.norm2(x), context=None) + x |
|
x = self.ff(self.norm3(x)) + x |
|
|
|
return x |
|
|
|
class ImgToTriplaneTransformer(nn.Module): |
|
""" |
|
Transformer block for image-like data. |
|
First, project the input (aka embedding) |
|
and reshape to b, t, d. |
|
Then apply standard transformer action. |
|
Finally, reshape to image |
|
""" |
|
def __init__(self, query_dim, n_heads, d_head, depth=1, dropout=0., context_dim=None, triplane_size=64): |
|
super().__init__() |
|
|
|
self.transformer_blocks = nn.ModuleList([ |
|
BasicTransformerBlockLRM(query_dim, n_heads, d_head, dropout=dropout, context_dim=context_dim) |
|
for d in range(depth)]) |
|
|
|
self.norm = Fp32LayerNorm(query_dim, eps=1e-6) |
|
|
|
self.initialize_weights() |
|
|
|
def initialize_weights(self): |
|
|
|
def _basic_init(module): |
|
if isinstance(module, nn.Linear): |
|
torch.nn.init.xavier_uniform_(module.weight) |
|
if module.bias is not None: |
|
nn.init.constant_(module.bias, 0) |
|
elif isinstance(module, nn.LayerNorm): |
|
if module.bias is not None: |
|
nn.init.constant_(module.bias, 0) |
|
if module.weight is not None: |
|
nn.init.constant_(module.weight, 1.0) |
|
self.apply(_basic_init) |
|
|
|
def forward(self, x, context=None, cam_emb=None): |
|
|
|
for block in self.transformer_blocks: |
|
x = block(x, context=context) |
|
x = self.norm(x) |
|
return x |
|
|
|
|
|
|
|
|
|
|
|
|