|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
import os, sys |
|
sys.path.insert(0, f"{os.path.dirname(os.path.dirname(os.path.abspath(__file__)))}") |
|
|
|
import time |
|
import torch |
|
import random |
|
import numpy as np |
|
from PIL import Image |
|
from einops import rearrange |
|
from PIL import Image, ImageSequence |
|
|
|
from infer.utils import seed_everything, timing_decorator, auto_amp_inference |
|
from infer.utils import get_parameter_number, set_parameter_grad_false, str_to_bool |
|
from svrm.predictor import MV23DPredictor |
|
|
|
|
|
class Views2Mesh(): |
|
def __init__(self, mv23d_cfg_path, mv23d_ckt_path, |
|
device="cuda:0", use_lite=False, save_memory=False): |
|
''' |
|
mv23d_cfg_path: config yaml file |
|
mv23d_ckt_path: path to ckpt |
|
use_lite: lite version |
|
save_memory: cpu auto |
|
''' |
|
self.mv23d_predictor = MV23DPredictor(mv23d_ckt_path, mv23d_cfg_path, device=device) |
|
self.mv23d_predictor.model.eval() |
|
self.order = [0, 1, 2, 3, 4, 5] if use_lite else [0, 2, 4, 5, 3, 1] |
|
self.device = device |
|
self.save_memory = save_memory |
|
set_parameter_grad_false(self.mv23d_predictor.model) |
|
print('view2mesh model', get_parameter_number(self.mv23d_predictor.model)) |
|
|
|
@torch.no_grad() |
|
@timing_decorator("views to mesh") |
|
@auto_amp_inference |
|
def __call__(self, *args, **kwargs): |
|
if self.save_memory: |
|
self.mv23d_predictor.model = self.mv23d_predictor.model.to(self.device) |
|
torch.cuda.empty_cache() |
|
res = self.call(*args, **kwargs) |
|
self.mv23d_predictor.model = self.mv23d_predictor.model.to("cpu") |
|
else: |
|
res = self.call(*args, **kwargs) |
|
torch.cuda.empty_cache() |
|
return res |
|
|
|
def call( |
|
self, |
|
views_pil=None, |
|
cond_pil=None, |
|
gif_pil=None, |
|
seed=0, |
|
target_face_count = 10000, |
|
do_texture_mapping = True, |
|
save_folder='./outputs/test' |
|
): |
|
''' |
|
can set views_pil, cond_pil simutaously or set gif_pil only |
|
seed: int |
|
target_face_count: int |
|
save_folder: path to save mesh files |
|
''' |
|
save_dir = save_folder |
|
os.makedirs(save_dir, exist_ok=True) |
|
|
|
if views_pil is not None and cond_pil is not None: |
|
show_image = rearrange(np.asarray(views_pil, dtype=np.uint8), |
|
'(n h) (m w) c -> (n m) h w c', n=3, m=2) |
|
views = [Image.fromarray(show_image[idx]) for idx in self.order] |
|
image_list = [cond_pil]+ views |
|
image_list = [img.convert('RGB') for img in image_list] |
|
elif gif_pil is not None: |
|
image_list = [img.convert('RGB') for img in ImageSequence.Iterator(gif_pil)] |
|
|
|
image_input = image_list[0] |
|
image_list = image_list[1:] + image_list[:1] |
|
|
|
seed_everything(seed) |
|
self.mv23d_predictor.predict( |
|
image_list, |
|
save_dir = save_dir, |
|
image_input = image_input, |
|
target_face_count = target_face_count, |
|
do_texture_mapping = do_texture_mapping |
|
) |
|
torch.cuda.empty_cache() |
|
return save_dir |
|
|
|
|
|
if __name__ == "__main__": |
|
|
|
import argparse |
|
|
|
def get_args(): |
|
parser = argparse.ArgumentParser() |
|
parser.add_argument("--views_path", type=str, required=True) |
|
parser.add_argument("--cond_path", type=str, required=True) |
|
parser.add_argument("--save_folder", default="./outputs/test/", type=str) |
|
parser.add_argument("--mv23d_cfg_path", default="./svrm/configs/svrm.yaml", type=str) |
|
parser.add_argument("--mv23d_ckt_path", default="weights/svrm/svrm.safetensors", type=str) |
|
parser.add_argument("--max_faces_num", default=90000, type=int, |
|
help="max num of face, suggest 90000 for effect, 10000 for speed") |
|
parser.add_argument("--device", default="cuda:0", type=str) |
|
parser.add_argument("--use_lite", default='false', type=str) |
|
parser.add_argument("--do_texture_mapping", default='false', type=str) |
|
|
|
return parser.parse_args() |
|
|
|
args = get_args() |
|
args.use_lite = str_to_bool(args.use_lite) |
|
args.do_texture_mapping = str_to_bool(args.do_texture_mapping) |
|
|
|
views = Image.open(args.views_path) |
|
cond = Image.open(args.cond_path) |
|
|
|
views_to_mesh_model = Views2Mesh( |
|
args.mv23d_cfg_path, |
|
args.mv23d_ckt_path, |
|
device = args.device, |
|
use_lite = args.use_lite |
|
) |
|
|
|
views_to_mesh_model( |
|
views, cond, 0, |
|
target_face_count = args.max_faces_num, |
|
save_folder = args.save_folder, |
|
do_texture_mapping = args.do_texture_mapping |
|
) |
|
|
|
|