|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
import math |
|
import numpy |
|
import torch |
|
import inspect |
|
import warnings |
|
from PIL import Image |
|
from einops import rearrange |
|
import torch.nn.functional as F |
|
from diffusers.utils.torch_utils import randn_tensor |
|
from diffusers.configuration_utils import FrozenDict |
|
from diffusers.image_processor import VaeImageProcessor |
|
from typing import Any, Callable, Dict, List, Optional, Union |
|
from diffusers.models import AutoencoderKL, UNet2DConditionModel |
|
from diffusers.schedulers import KarrasDiffusionSchedulers |
|
from diffusers.pipelines.pipeline_utils import DiffusionPipeline |
|
from diffusers.pipelines.stable_diffusion import StableDiffusionPipelineOutput |
|
from diffusers import DDPMScheduler, EulerAncestralDiscreteScheduler, ImagePipelineOutput |
|
from diffusers.loaders import ( |
|
FromSingleFileMixin, |
|
LoraLoaderMixin, |
|
TextualInversionLoaderMixin |
|
) |
|
from transformers import ( |
|
CLIPImageProcessor, |
|
CLIPTextModel, |
|
CLIPTokenizer, |
|
CLIPVisionModelWithProjection |
|
) |
|
from diffusers.models.attention_processor import ( |
|
Attention, |
|
AttnProcessor, |
|
XFormersAttnProcessor, |
|
AttnProcessor2_0 |
|
) |
|
|
|
from .utils import to_rgb_image, white_out_background, recenter_img |
|
|
|
|
|
EXAMPLE_DOC_STRING = """ |
|
Examples: |
|
```py |
|
>>> import torch |
|
>>> from here import Hunyuan3d_MVD_Lite_Pipeline |
|
|
|
>>> pipe = Hunyuan3d_MVD_Lite_Pipeline.from_pretrained( |
|
... "weights/mvd_lite", torch_dtype=torch.float16 |
|
... ) |
|
>>> pipe.to("cuda") |
|
|
|
>>> img = Image.open("demo.png") |
|
>>> res_img = pipe(img).images[0] |
|
""" |
|
|
|
def unscale_latents(latents): return latents / 0.75 + 0.22 |
|
def unscale_image (image ): return image / 0.50 * 0.80 |
|
|
|
|
|
def rescale_noise_cfg(noise_cfg, noise_pred_text, guidance_rescale=0.0): |
|
std_text = noise_pred_text.std(dim=list(range(1, noise_pred_text.ndim)), keepdim=True) |
|
std_cfg = noise_cfg.std(dim=list(range(1, noise_cfg.ndim)), keepdim=True) |
|
noise_pred_rescaled = noise_cfg * (std_text / std_cfg) |
|
noise_cfg = guidance_rescale * noise_pred_rescaled + (1 - guidance_rescale) * noise_cfg |
|
return noise_cfg |
|
|
|
|
|
|
|
class ReferenceOnlyAttnProc(torch.nn.Module): |
|
|
|
def __init__(self, chained_proc, enabled=False, name=None): |
|
super().__init__() |
|
self.enabled = enabled |
|
self.chained_proc = chained_proc |
|
self.name = name |
|
|
|
def __call__(self, attn, hidden_states, encoder_hidden_states=None, attention_mask=None, mode="w", ref_dict=None): |
|
if encoder_hidden_states is None: encoder_hidden_states = hidden_states |
|
if self.enabled: |
|
if mode == 'w': |
|
ref_dict[self.name] = encoder_hidden_states |
|
elif mode == 'r': |
|
encoder_hidden_states = torch.cat([encoder_hidden_states, ref_dict.pop(self.name)], dim=1) |
|
res = self.chained_proc(attn, hidden_states, encoder_hidden_states, attention_mask) |
|
return res |
|
|
|
|
|
class RefOnlyNoisedUNet(torch.nn.Module): |
|
def __init__(self, unet, train_sched, val_sched): |
|
super().__init__() |
|
self.unet = unet |
|
self.train_sched = train_sched |
|
self.val_sched = val_sched |
|
|
|
unet_lora_attn_procs = dict() |
|
for name, _ in unet.attn_processors.items(): |
|
unet_lora_attn_procs[name] = ReferenceOnlyAttnProc(AttnProcessor2_0(), |
|
enabled=name.endswith("attn1.processor"), |
|
name=name) |
|
unet.set_attn_processor(unet_lora_attn_procs) |
|
|
|
def __getattr__(self, name: str): |
|
try: |
|
return super().__getattr__(name) |
|
except AttributeError: |
|
return getattr(self.unet, name) |
|
|
|
def forward(self, sample, timestep, encoder_hidden_states, *args, cross_attention_kwargs, **kwargs): |
|
cond_lat = cross_attention_kwargs['cond_lat'] |
|
noise = torch.randn_like(cond_lat) |
|
if self.training: |
|
noisy_cond_lat = self.train_sched.add_noise(cond_lat, noise, timestep) |
|
noisy_cond_lat = self.train_sched.scale_model_input(noisy_cond_lat, timestep) |
|
else: |
|
noisy_cond_lat = self.val_sched.add_noise(cond_lat, noise, timestep.reshape(-1)) |
|
noisy_cond_lat = self.val_sched.scale_model_input(noisy_cond_lat, timestep.reshape(-1)) |
|
|
|
ref_dict = {} |
|
self.unet(noisy_cond_lat, |
|
timestep, |
|
encoder_hidden_states, |
|
*args, |
|
cross_attention_kwargs=dict(mode="w", ref_dict=ref_dict), |
|
**kwargs) |
|
return self.unet(sample, |
|
timestep, |
|
encoder_hidden_states, |
|
*args, |
|
cross_attention_kwargs=dict(mode="r", ref_dict=ref_dict), |
|
**kwargs) |
|
|
|
|
|
class Hunyuan3d_MVD_Lite_Pipeline(DiffusionPipeline, TextualInversionLoaderMixin, LoraLoaderMixin, FromSingleFileMixin): |
|
def __init__( |
|
self, |
|
vae: AutoencoderKL, |
|
text_encoder: CLIPTextModel, |
|
tokenizer: CLIPTokenizer, |
|
unet: UNet2DConditionModel, |
|
scheduler: KarrasDiffusionSchedulers, |
|
vision_encoder: CLIPVisionModelWithProjection, |
|
feature_extractor_clip: CLIPImageProcessor, |
|
feature_extractor_vae: CLIPImageProcessor, |
|
ramping_coefficients: Optional[list] = None, |
|
safety_checker=None, |
|
): |
|
DiffusionPipeline.__init__(self) |
|
self.register_modules( |
|
vae=vae, |
|
unet=unet, |
|
tokenizer=tokenizer, |
|
scheduler=scheduler, |
|
text_encoder=text_encoder, |
|
vision_encoder=vision_encoder, |
|
feature_extractor_vae=feature_extractor_vae, |
|
feature_extractor_clip=feature_extractor_clip |
|
) |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
self.register_to_config(ramping_coefficients=ramping_coefficients) |
|
self.vae_scale_factor = 2 ** (len(self.vae.config.block_out_channels) - 1) |
|
self.image_processor = VaeImageProcessor(vae_scale_factor=self.vae_scale_factor) |
|
|
|
def prepare_extra_step_kwargs(self, generator, eta): |
|
extra_step_kwargs = {} |
|
accepts_eta = "eta" in set(inspect.signature(self.scheduler.step).parameters.keys()) |
|
if accepts_eta: extra_step_kwargs["eta"] = eta |
|
|
|
accepts_generator = "generator" in set(inspect.signature(self.scheduler.step).parameters.keys()) |
|
if accepts_generator: extra_step_kwargs["generator"] = generator |
|
return extra_step_kwargs |
|
|
|
def prepare_latents(self, batch_size, num_channels_latents, height, width, dtype, device, generator, latents=None): |
|
shape = (batch_size, num_channels_latents, height // self.vae_scale_factor, width // self.vae_scale_factor) |
|
latents = randn_tensor(shape, generator=generator, device=device, dtype=dtype) |
|
latents = latents * self.scheduler.init_noise_sigma |
|
return latents |
|
|
|
@torch.no_grad() |
|
def _encode_prompt( |
|
self, |
|
prompt, |
|
device, |
|
num_images_per_prompt, |
|
do_classifier_free_guidance, |
|
negative_prompt=None, |
|
prompt_embeds: Optional[torch.FloatTensor] = None, |
|
negative_prompt_embeds: Optional[torch.FloatTensor] = None, |
|
lora_scale: Optional[float] = None, |
|
): |
|
if lora_scale is not None and isinstance(self, LoraLoaderMixin): |
|
self._lora_scale = lora_scale |
|
|
|
if prompt is not None and isinstance(prompt, str): |
|
batch_size = 1 |
|
elif prompt is not None and isinstance(prompt, list): |
|
batch_size = len(prompt) |
|
else: |
|
batch_size = prompt_embeds.shape[0] |
|
|
|
if prompt_embeds is None: |
|
if isinstance(self, TextualInversionLoaderMixin): |
|
prompt = self.maybe_convert_prompt(prompt, self.tokenizer) |
|
|
|
text_inputs = self.tokenizer( |
|
prompt, |
|
padding="max_length", |
|
max_length=self.tokenizer.model_max_length, |
|
truncation=True, |
|
return_tensors="pt", |
|
) |
|
text_input_ids = text_inputs.input_ids |
|
|
|
if hasattr(self.text_encoder.config, "use_attention_mask") and self.text_encoder.config.use_attention_mask: |
|
attention_mask = text_inputs.attention_mask.to(device) |
|
else: |
|
attention_mask = None |
|
|
|
prompt_embeds = self.text_encoder(text_input_ids.to(device), attention_mask=attention_mask)[0] |
|
|
|
if self.text_encoder is not None: |
|
prompt_embeds_dtype = self.text_encoder.dtype |
|
elif self.unet is not None: |
|
prompt_embeds_dtype = self.unet.dtype |
|
else: |
|
prompt_embeds_dtype = prompt_embeds.dtype |
|
|
|
prompt_embeds = prompt_embeds.to(dtype=prompt_embeds_dtype, device=device) |
|
bs_embed, seq_len, _ = prompt_embeds.shape |
|
prompt_embeds = prompt_embeds.repeat(1, num_images_per_prompt, 1) |
|
prompt_embeds = prompt_embeds.view(bs_embed * num_images_per_prompt, seq_len, -1) |
|
|
|
if do_classifier_free_guidance and negative_prompt_embeds is None: |
|
uncond_tokens: List[str] |
|
if negative_prompt is None: uncond_tokens = [""] * batch_size |
|
elif prompt is not None and type(prompt) is not type(negative_prompt): raise TypeError() |
|
elif isinstance(negative_prompt, str): uncond_tokens = [negative_prompt] |
|
elif batch_size != len(negative_prompt): raise ValueError() |
|
else: uncond_tokens = negative_prompt |
|
if isinstance(self, TextualInversionLoaderMixin): |
|
uncond_tokens = self.maybe_convert_prompt(uncond_tokens, self.tokenizer) |
|
|
|
max_length = prompt_embeds.shape[1] |
|
uncond_input = self.tokenizer(uncond_tokens, |
|
padding="max_length", |
|
max_length=max_length, |
|
truncation=True, |
|
return_tensors="pt") |
|
|
|
if hasattr(self.text_encoder.config, "use_attention_mask") and self.text_encoder.config.use_attention_mask: |
|
attention_mask = uncond_input.attention_mask.to(device) |
|
else: |
|
attention_mask = None |
|
|
|
negative_prompt_embeds = self.text_encoder(uncond_input.input_ids.to(device), attention_mask=attention_mask) |
|
negative_prompt_embeds = negative_prompt_embeds[0] |
|
|
|
if do_classifier_free_guidance: |
|
seq_len = negative_prompt_embeds.shape[1] |
|
negative_prompt_embeds = negative_prompt_embeds.to(dtype=prompt_embeds_dtype, device=device) |
|
negative_prompt_embeds = negative_prompt_embeds.repeat(1, num_images_per_prompt, 1) |
|
negative_prompt_embeds = negative_prompt_embeds.view(batch_size * num_images_per_prompt, seq_len, -1) |
|
prompt_embeds = torch.cat([negative_prompt_embeds, prompt_embeds]) |
|
|
|
return prompt_embeds |
|
|
|
@torch.no_grad() |
|
def encode_condition_image(self, image: torch.Tensor): return self.vae.encode(image).latent_dist.sample() |
|
|
|
@torch.no_grad() |
|
def __call__(self, image=None, |
|
width=640, |
|
height=960, |
|
num_inference_steps=75, |
|
return_dict=True, |
|
generator=None, |
|
**kwargs): |
|
batch_size = 1 |
|
num_images_per_prompt = 1 |
|
output_type = 'pil' |
|
do_classifier_free_guidance = True |
|
guidance_rescale = 0. |
|
if isinstance(self.unet, UNet2DConditionModel): |
|
self.unet = RefOnlyNoisedUNet(self.unet, None, self.scheduler).eval() |
|
|
|
cond_image = recenter_img(image) |
|
cond_image = to_rgb_image(image) |
|
image = cond_image |
|
image_1 = self.feature_extractor_vae(images=image, return_tensors="pt").pixel_values |
|
image_2 = self.feature_extractor_clip(images=image, return_tensors="pt").pixel_values |
|
image_1 = image_1.to(device=self.vae.device, dtype=self.vae.dtype) |
|
image_2 = image_2.to(device=self.vae.device, dtype=self.vae.dtype) |
|
|
|
cond_lat = self.encode_condition_image(image_1) |
|
negative_lat = self.encode_condition_image(torch.zeros_like(image_1)) |
|
cond_lat = torch.cat([negative_lat, cond_lat]) |
|
cross_attention_kwargs = dict(cond_lat=cond_lat) |
|
|
|
global_embeds = self.vision_encoder(image_2, output_hidden_states=False).image_embeds.unsqueeze(-2) |
|
encoder_hidden_states = self._encode_prompt('', self.device, num_images_per_prompt, False) |
|
ramp = global_embeds.new_tensor(self.config.ramping_coefficients).unsqueeze(-1) |
|
prompt_embeds = torch.cat([encoder_hidden_states, encoder_hidden_states + global_embeds * ramp]) |
|
|
|
device = self._execution_device |
|
self.scheduler.set_timesteps(num_inference_steps, device=device) |
|
timesteps = self.scheduler.timesteps |
|
num_channels_latents = self.unet.config.in_channels |
|
latents = self.prepare_latents(batch_size * num_images_per_prompt, |
|
num_channels_latents, |
|
height, |
|
width, |
|
prompt_embeds.dtype, |
|
device, |
|
generator, |
|
None) |
|
extra_step_kwargs = self.prepare_extra_step_kwargs(generator, 0.0) |
|
num_warmup_steps = len(timesteps) - num_inference_steps * self.scheduler.order |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
tmp_guidance_scale = torch.ones_like(latents) |
|
tmp_guidance_scale[:, :, :40, :40] = 3 |
|
tmp_guidance_scale[:, :, :40, 40:] = 2.5 |
|
tmp_guidance_scale[:, :, 40:80, :40] = 2 |
|
tmp_guidance_scale[:, :, 40:80, 40:] = 1.5 |
|
tmp_guidance_scale[:, :, 80:120, :40] = 2 |
|
tmp_guidance_scale[:, :, 80:120, 40:] = 2.5 |
|
|
|
with self.progress_bar(total=num_inference_steps) as progress_bar: |
|
for i, t in enumerate(timesteps): |
|
latent_model_input = torch.cat([latents] * 2) if do_classifier_free_guidance else latents |
|
latent_model_input = self.scheduler.scale_model_input(latent_model_input, t) |
|
|
|
noise_pred = self.unet(latent_model_input, t, |
|
encoder_hidden_states=prompt_embeds, |
|
cross_attention_kwargs=cross_attention_kwargs, |
|
return_dict=False)[0] |
|
|
|
adaptive_guidance_scale = (2 + 16 * (t / 1000) ** 5) / 3 |
|
if do_classifier_free_guidance: |
|
noise_pred_uncond, noise_pred_text = noise_pred.chunk(2) |
|
noise_pred = noise_pred_uncond + \ |
|
tmp_guidance_scale * adaptive_guidance_scale * \ |
|
(noise_pred_text - noise_pred_uncond) |
|
|
|
if do_classifier_free_guidance and guidance_rescale > 0.0: |
|
noise_pred = rescale_noise_cfg(noise_pred, noise_pred_text, guidance_rescale=guidance_rescale) |
|
|
|
latents = self.scheduler.step(noise_pred, t, latents, **extra_step_kwargs, return_dict=False)[0] |
|
if i==len(timesteps)-1 or ((i+1)>num_warmup_steps and (i+1)%self.scheduler.order==0): |
|
progress_bar.update() |
|
|
|
latents = unscale_latents(latents) |
|
image = unscale_image(self.vae.decode(latents / self.vae.config.scaling_factor, return_dict=False)[0]) |
|
image = self.image_processor.postprocess(image, output_type='pil')[0] |
|
image = [image, cond_image] |
|
return ImagePipelineOutput(images=image) if return_dict else (image,) |
|
|
|
|