|
import os |
|
import math |
|
import numpy as np |
|
from collections import defaultdict |
|
|
|
import torch |
|
import torch.nn as nn |
|
import torch.nn.functional as F |
|
from torch.autograd import Function |
|
from torch.cuda.amp import custom_bwd, custom_fwd |
|
from igl import fast_winding_number_for_meshes, point_mesh_squared_distance, read_obj |
|
|
|
from .typing import * |
|
|
|
|
|
def get_rank(): |
|
|
|
|
|
rank_keys = ("RANK", "LOCAL_RANK", "SLURM_PROCID", "JSM_NAMESPACE_RANK") |
|
for key in rank_keys: |
|
rank = os.environ.get(key) |
|
if rank is not None: |
|
return int(rank) |
|
return 0 |
|
|
|
def dot(x, y): |
|
return torch.sum(x * y, -1, keepdim=True) |
|
|
|
|
|
def reflect(x, n): |
|
return 2 * dot(x, n) * n - x |
|
|
|
|
|
ValidScale = Union[Tuple[float, float], Num[Tensor, "2 D"]] |
|
|
|
|
|
def scale_tensor( |
|
dat: Num[Tensor, "... D"], inp_scale: ValidScale, tgt_scale: ValidScale |
|
): |
|
if inp_scale is None: |
|
inp_scale = (0, 1) |
|
if tgt_scale is None: |
|
tgt_scale = (0, 1) |
|
if isinstance(tgt_scale, Tensor): |
|
assert dat.shape[-1] == tgt_scale.shape[-1] |
|
dat = (dat - inp_scale[0]) / (inp_scale[1] - inp_scale[0]) |
|
dat = dat * (tgt_scale[1] - tgt_scale[0]) + tgt_scale[0] |
|
return dat |
|
|
|
|
|
class _TruncExp(Function): |
|
|
|
|
|
@staticmethod |
|
@custom_fwd(cast_inputs=torch.float32) |
|
def forward(ctx, x): |
|
ctx.save_for_backward(x) |
|
return torch.exp(x) |
|
|
|
@staticmethod |
|
@custom_bwd |
|
def backward(ctx, g): |
|
x = ctx.saved_tensors[0] |
|
return g * torch.exp(torch.clamp(x, max=15)) |
|
|
|
|
|
class SpecifyGradient(Function): |
|
|
|
|
|
@staticmethod |
|
@custom_fwd |
|
def forward(ctx, input_tensor, gt_grad): |
|
ctx.save_for_backward(gt_grad) |
|
|
|
return torch.ones([1], device=input_tensor.device, dtype=input_tensor.dtype) |
|
|
|
@staticmethod |
|
@custom_bwd |
|
def backward(ctx, grad_scale): |
|
(gt_grad,) = ctx.saved_tensors |
|
gt_grad = gt_grad * grad_scale |
|
return gt_grad, None |
|
|
|
|
|
trunc_exp = _TruncExp.apply |
|
|
|
|
|
def get_activation(name) -> Callable: |
|
if name is None: |
|
return lambda x: x |
|
name = name.lower() |
|
if name == "none": |
|
return lambda x: x |
|
elif name == "lin2srgb": |
|
return lambda x: torch.where( |
|
x > 0.0031308, |
|
torch.pow(torch.clamp(x, min=0.0031308), 1.0 / 2.4) * 1.055 - 0.055, |
|
12.92 * x, |
|
).clamp(0.0, 1.0) |
|
elif name == "exp": |
|
return lambda x: torch.exp(x) |
|
elif name == "shifted_exp": |
|
return lambda x: torch.exp(x - 1.0) |
|
elif name == "trunc_exp": |
|
return trunc_exp |
|
elif name == "shifted_trunc_exp": |
|
return lambda x: trunc_exp(x - 1.0) |
|
elif name == "sigmoid": |
|
return lambda x: torch.sigmoid(x) |
|
elif name == "tanh": |
|
return lambda x: torch.tanh(x) |
|
elif name == "shifted_softplus": |
|
return lambda x: F.softplus(x - 1.0) |
|
elif name == "scale_-11_01": |
|
return lambda x: x * 0.5 + 0.5 |
|
else: |
|
try: |
|
return getattr(F, name) |
|
except AttributeError: |
|
raise ValueError(f"Unknown activation function: {name}") |
|
|
|
|
|
def chunk_batch(func: Callable, chunk_size: int, triplane=None, *args, **kwargs) -> Any: |
|
if chunk_size <= 0: |
|
return func(*args, **kwargs) |
|
B = None |
|
for arg in list(args) + list(kwargs.values()): |
|
if isinstance(arg, torch.Tensor): |
|
B = arg.shape[0] |
|
break |
|
assert ( |
|
B is not None |
|
), "No tensor found in args or kwargs, cannot determine batch size." |
|
out = defaultdict(list) |
|
out_type = None |
|
|
|
for i in range(0, max(1, B), chunk_size): |
|
if triplane is not None: |
|
out_chunk = func(triplane=triplane, |
|
*[ |
|
arg[i : i + chunk_size] if isinstance(arg, torch.Tensor) else arg |
|
for arg in args |
|
], |
|
**{ |
|
k: arg[i : i + chunk_size] if isinstance(arg, torch.Tensor) else arg |
|
for k, arg in kwargs.items() |
|
}, |
|
) |
|
else: |
|
out_chunk = func( |
|
*[ |
|
arg[i : i + chunk_size] if isinstance(arg, torch.Tensor) else arg |
|
for arg in args |
|
], |
|
**{ |
|
k: arg[i : i + chunk_size] if isinstance(arg, torch.Tensor) else arg |
|
for k, arg in kwargs.items() |
|
}, |
|
) |
|
if out_chunk is None: |
|
continue |
|
out_type = type(out_chunk) |
|
if isinstance(out_chunk, torch.Tensor): |
|
out_chunk = {0: out_chunk} |
|
elif isinstance(out_chunk, tuple) or isinstance(out_chunk, list): |
|
chunk_length = len(out_chunk) |
|
out_chunk = {i: chunk for i, chunk in enumerate(out_chunk)} |
|
elif isinstance(out_chunk, dict): |
|
pass |
|
else: |
|
print( |
|
f"Return value of func must be in type [torch.Tensor, list, tuple, dict], get {type(out_chunk)}." |
|
) |
|
exit(1) |
|
for k, v in out_chunk.items(): |
|
v = v if torch.is_grad_enabled() else v.detach() |
|
out[k].append(v) |
|
|
|
if out_type is None: |
|
return None |
|
|
|
out_merged: Dict[Any, Optional[torch.Tensor]] = {} |
|
for k, v in out.items(): |
|
if all([vv is None for vv in v]): |
|
|
|
out_merged[k] = None |
|
elif all([isinstance(vv, torch.Tensor) for vv in v]): |
|
out_merged[k] = torch.cat(v, dim=0) |
|
else: |
|
raise TypeError( |
|
f"Unsupported types in return value of func: {[type(vv) for vv in v if not isinstance(vv, torch.Tensor)]}" |
|
) |
|
|
|
if out_type is torch.Tensor: |
|
return out_merged[0] |
|
elif out_type in [tuple, list]: |
|
return out_type([out_merged[i] for i in range(chunk_length)]) |
|
elif out_type is dict: |
|
return out_merged |
|
|
|
|
|
def get_ray_directions( |
|
H: int, |
|
W: int, |
|
focal: Union[float, Tuple[float, float]], |
|
principal: Optional[Tuple[float, float]] = None, |
|
use_pixel_centers: bool = True, |
|
) -> Float[Tensor, "H W 3"]: |
|
""" |
|
Get ray directions for all pixels in camera coordinate. |
|
Reference: https://www.scratchapixel.com/lessons/3d-basic-rendering/ |
|
ray-tracing-generating-camera-rays/standard-coordinate-systems |
|
|
|
Inputs: |
|
H, W, focal, principal, use_pixel_centers: image height, width, focal length, principal point and whether use pixel centers |
|
Outputs: |
|
directions: (H, W, 3), the direction of the rays in camera coordinate |
|
""" |
|
pixel_center = 0.5 if use_pixel_centers else 0 |
|
|
|
if isinstance(focal, float): |
|
fx, fy = focal, focal |
|
cx, cy = W / 2, H / 2 |
|
else: |
|
fx, fy = focal |
|
assert principal is not None |
|
cx, cy = principal |
|
|
|
i, j = torch.meshgrid( |
|
torch.arange(W, dtype=torch.float32) + pixel_center, |
|
torch.arange(H, dtype=torch.float32) + pixel_center, |
|
indexing="xy", |
|
) |
|
|
|
directions: Float[Tensor, "H W 3"] = torch.stack( |
|
[(i - cx) / fx, -(j - cy) / fy, -torch.ones_like(i)], -1 |
|
) |
|
|
|
return directions |
|
|
|
|
|
def get_rays( |
|
directions: Float[Tensor, "... 3"], |
|
c2w: Float[Tensor, "... 4 4"], |
|
keepdim=False, |
|
noise_scale=0.0, |
|
) -> Tuple[Float[Tensor, "... 3"], Float[Tensor, "... 3"]]: |
|
|
|
assert directions.shape[-1] == 3 |
|
|
|
if directions.ndim == 2: |
|
if c2w.ndim == 2: |
|
c2w = c2w[None, :, :] |
|
assert c2w.ndim == 3 |
|
rays_d = (directions[:, None, :] * c2w[:, :3, :3]).sum(-1) |
|
rays_o = c2w[:, :3, 3].expand(rays_d.shape) |
|
elif directions.ndim == 3: |
|
assert c2w.ndim in [2, 3] |
|
if c2w.ndim == 2: |
|
rays_d = (directions[:, :, None, :] * c2w[None, None, :3, :3]).sum( |
|
-1 |
|
) |
|
rays_o = c2w[None, None, :3, 3].expand(rays_d.shape) |
|
elif c2w.ndim == 3: |
|
rays_d = (directions[None, :, :, None, :] * c2w[:, None, None, :3, :3]).sum( |
|
-1 |
|
) |
|
rays_o = c2w[:, None, None, :3, 3].expand(rays_d.shape) |
|
elif directions.ndim == 4: |
|
assert c2w.ndim == 3 |
|
rays_d = (directions[:, :, :, None, :] * c2w[:, None, None, :3, :3]).sum( |
|
-1 |
|
) |
|
rays_o = c2w[:, None, None, :3, 3].expand(rays_d.shape) |
|
|
|
|
|
|
|
if noise_scale > 0: |
|
rays_o = rays_o + torch.randn(3, device=rays_o.device) * noise_scale |
|
rays_d = rays_d + torch.randn(3, device=rays_d.device) * noise_scale |
|
|
|
rays_d = F.normalize(rays_d, dim=-1) |
|
if not keepdim: |
|
rays_o, rays_d = rays_o.reshape(-1, 3), rays_d.reshape(-1, 3) |
|
|
|
return rays_o, rays_d |
|
|
|
|
|
def get_projection_matrix( |
|
fovy: Float[Tensor, "B"], aspect_wh: float, near: float, far: float |
|
) -> Float[Tensor, "B 4 4"]: |
|
batch_size = fovy.shape[0] |
|
proj_mtx = torch.zeros(batch_size, 4, 4, dtype=torch.float32) |
|
proj_mtx[:, 0, 0] = 1.0 / (torch.tan(fovy / 2.0) * aspect_wh) |
|
proj_mtx[:, 1, 1] = -1.0 / torch.tan( |
|
fovy / 2.0 |
|
) |
|
proj_mtx[:, 2, 2] = -(far + near) / (far - near) |
|
proj_mtx[:, 2, 3] = -2.0 * far * near / (far - near) |
|
proj_mtx[:, 3, 2] = -1.0 |
|
return proj_mtx |
|
|
|
|
|
def get_mvp_matrix( |
|
c2w: Float[Tensor, "B 4 4"], proj_mtx: Float[Tensor, "B 4 4"] |
|
) -> Float[Tensor, "B 4 4"]: |
|
|
|
|
|
w2c: Float[Tensor, "B 4 4"] = torch.zeros(c2w.shape[0], 4, 4).to(c2w) |
|
w2c[:, :3, :3] = c2w[:, :3, :3].permute(0, 2, 1) |
|
w2c[:, :3, 3:] = -c2w[:, :3, :3].permute(0, 2, 1) @ c2w[:, :3, 3:] |
|
w2c[:, 3, 3] = 1.0 |
|
|
|
mvp_mtx = proj_mtx @ w2c |
|
return mvp_mtx |
|
|
|
|
|
def get_full_projection_matrix( |
|
c2w: Float[Tensor, "B 4 4"], proj_mtx: Float[Tensor, "B 4 4"] |
|
) -> Float[Tensor, "B 4 4"]: |
|
return (c2w.unsqueeze(0).bmm(proj_mtx.unsqueeze(0))).squeeze(0) |
|
|
|
|
|
|
|
def convert_pose(C2W): |
|
flip_yz = torch.eye(4, device=C2W.device) |
|
flip_yz[1, 1] = -1 |
|
flip_yz[2, 2] = -1 |
|
C2W = torch.matmul(C2W, flip_yz) |
|
return C2W |
|
|
|
|
|
def get_projection_matrix_gaussian(znear, zfar, fovX, fovY, device="cuda"): |
|
tanHalfFovY = math.tan((fovY / 2)) |
|
tanHalfFovX = math.tan((fovX / 2)) |
|
|
|
top = tanHalfFovY * znear |
|
bottom = -top |
|
right = tanHalfFovX * znear |
|
left = -right |
|
|
|
P = torch.zeros(4, 4, device=device) |
|
|
|
z_sign = 1.0 |
|
|
|
P[0, 0] = 2.0 * znear / (right - left) |
|
P[1, 1] = 2.0 * znear / (top - bottom) |
|
P[0, 2] = (right + left) / (right - left) |
|
P[1, 2] = (top + bottom) / (top - bottom) |
|
P[3, 2] = z_sign |
|
P[2, 2] = z_sign * zfar / (zfar - znear) |
|
P[2, 3] = -(zfar * znear) / (zfar - znear) |
|
return P |
|
|
|
|
|
def get_fov_gaussian(P): |
|
tanHalfFovX = 1 / P[0, 0] |
|
tanHalfFovY = 1 / P[1, 1] |
|
fovY = math.atan(tanHalfFovY) * 2 |
|
fovX = math.atan(tanHalfFovX) * 2 |
|
return fovX, fovY |
|
|
|
|
|
def get_cam_info_gaussian(c2w, fovx, fovy, znear, zfar): |
|
c2w = convert_pose(c2w) |
|
world_view_transform = torch.inverse(c2w) |
|
|
|
world_view_transform = world_view_transform.transpose(0, 1).cuda().float() |
|
projection_matrix = ( |
|
get_projection_matrix_gaussian(znear=znear, zfar=zfar, fovX=fovx, fovY=fovy) |
|
.transpose(0, 1) |
|
.cuda() |
|
) |
|
full_proj_transform = ( |
|
world_view_transform.unsqueeze(0).bmm(projection_matrix.unsqueeze(0)) |
|
).squeeze(0) |
|
camera_center = world_view_transform.inverse()[3, :3] |
|
|
|
return world_view_transform, full_proj_transform, camera_center |
|
|
|
|
|
def binary_cross_entropy(input, target): |
|
""" |
|
F.binary_cross_entropy is not numerically stable in mixed-precision training. |
|
""" |
|
return -(target * torch.log(input) + (1 - target) * torch.log(1 - input)).mean() |
|
|
|
|
|
def tet_sdf_diff( |
|
vert_sdf: Float[Tensor, "Nv 1"], tet_edges: Integer[Tensor, "Ne 2"] |
|
) -> Float[Tensor, ""]: |
|
sdf_f1x6x2 = vert_sdf[:, 0][tet_edges.reshape(-1)].reshape(-1, 2) |
|
mask = torch.sign(sdf_f1x6x2[..., 0]) != torch.sign(sdf_f1x6x2[..., 1]) |
|
sdf_f1x6x2 = sdf_f1x6x2[mask] |
|
sdf_diff = F.binary_cross_entropy_with_logits( |
|
sdf_f1x6x2[..., 0], (sdf_f1x6x2[..., 1] > 0).float() |
|
) + F.binary_cross_entropy_with_logits( |
|
sdf_f1x6x2[..., 1], (sdf_f1x6x2[..., 0] > 0).float() |
|
) |
|
return sdf_diff |
|
|
|
|
|
|
|
|
|
class MeshOBJ: |
|
dx = torch.zeros(3).float() |
|
dx[0] = 1 |
|
dy, dz = dx[[1, 0, 2]], dx[[2, 1, 0]] |
|
dx, dy, dz = dx[None, :], dy[None, :], dz[None, :] |
|
|
|
def __init__(self, v: np.ndarray, f: np.ndarray): |
|
self.v = v |
|
self.f = f |
|
self.dx, self.dy, self.dz = MeshOBJ.dx, MeshOBJ.dy, MeshOBJ.dz |
|
self.v_tensor = torch.from_numpy(self.v) |
|
|
|
vf = self.v[self.f, :] |
|
self.f_center = vf.mean(axis=1) |
|
self.f_center_tensor = torch.from_numpy(self.f_center).float() |
|
|
|
e1 = vf[:, 1, :] - vf[:, 0, :] |
|
e2 = vf[:, 2, :] - vf[:, 0, :] |
|
self.face_normals = np.cross(e1, e2) |
|
self.face_normals = ( |
|
self.face_normals / np.linalg.norm(self.face_normals, axis=-1)[:, None] |
|
) |
|
self.face_normals_tensor = torch.from_numpy(self.face_normals) |
|
|
|
def normalize_mesh(self, target_scale=0.5): |
|
verts = self.v |
|
|
|
|
|
|
|
center = verts.mean(axis=0) |
|
verts = verts - center |
|
scale = np.max(np.linalg.norm(verts, axis=1)) |
|
verts = (verts / scale) * target_scale |
|
|
|
return MeshOBJ(verts, self.f) |
|
|
|
def winding_number(self, query: torch.Tensor): |
|
device = query.device |
|
shp = query.shape |
|
query_np = query.detach().cpu().reshape(-1, 3).numpy() |
|
target_alphas = fast_winding_number_for_meshes( |
|
self.v.astype(np.float32), self.f, query_np |
|
) |
|
return torch.from_numpy(target_alphas).reshape(shp[:-1]).to(device) |
|
|
|
def gaussian_weighted_distance(self, query: torch.Tensor, sigma): |
|
device = query.device |
|
shp = query.shape |
|
query_np = query.detach().cpu().reshape(-1, 3).numpy() |
|
distances, _, _ = point_mesh_squared_distance( |
|
query_np, self.v.astype(np.float32), self.f |
|
) |
|
distances = torch.from_numpy(distances).reshape(shp[:-1]).to(device) |
|
weight = torch.exp(-(distances / (2 * sigma**2))) |
|
return weight |
|
|
|
|
|
def ce_pq_loss(p, q, weight=None): |
|
def clamp(v, T=0.0001): |
|
return v.clamp(T, 1 - T) |
|
|
|
p = p.view(q.shape) |
|
ce = -1 * (p * torch.log(clamp(q)) + (1 - p) * torch.log(clamp(1 - q))) |
|
if weight is not None: |
|
ce *= weight |
|
return ce.sum() |
|
|
|
|
|
class ShapeLoss(nn.Module): |
|
def __init__(self, guide_shape): |
|
super().__init__() |
|
self.mesh_scale = 0.7 |
|
self.proximal_surface = 0.3 |
|
self.delta = 0.2 |
|
self.shape_path = guide_shape |
|
v, _, _, f, _, _ = read_obj(self.shape_path, float) |
|
mesh = MeshOBJ(v, f) |
|
matrix_rot = np.array([[1, 0, 0], [0, 0, -1], [0, 1, 0]]) @ np.array( |
|
[[0, 0, 1], [0, 1, 0], [-1, 0, 0]] |
|
) |
|
self.sketchshape = mesh.normalize_mesh(self.mesh_scale) |
|
self.sketchshape = MeshOBJ( |
|
np.ascontiguousarray( |
|
(matrix_rot @ self.sketchshape.v.transpose(1, 0)).transpose(1, 0) |
|
), |
|
f, |
|
) |
|
|
|
def forward(self, xyzs, sigmas): |
|
mesh_occ = self.sketchshape.winding_number(xyzs) |
|
if self.proximal_surface > 0: |
|
weight = 1 - self.sketchshape.gaussian_weighted_distance( |
|
xyzs, self.proximal_surface |
|
) |
|
else: |
|
weight = None |
|
indicator = (mesh_occ > 0.5).float() |
|
nerf_occ = 1 - torch.exp(-self.delta * sigmas) |
|
nerf_occ = nerf_occ.clamp(min=0, max=1.1) |
|
loss = ce_pq_loss( |
|
nerf_occ, indicator, weight=weight |
|
) |
|
return loss |
|
|
|
|
|
def shifted_expotional_decay(a, b, c, r): |
|
return a * torch.exp(-b * r) + c |
|
|
|
|
|
def shifted_cosine_decay(a, b, c, r): |
|
return a * torch.cos(b * r + c) + a |
|
|
|
|
|
def perpendicular_component(x: Float[Tensor, "B C H W"], y: Float[Tensor, "B C H W"]): |
|
|
|
eps = torch.ones_like(x[:, 0, 0, 0]) * 1e-6 |
|
return ( |
|
x |
|
- ( |
|
torch.mul(x, y).sum(dim=[1, 2, 3]) |
|
/ torch.maximum(torch.mul(y, y).sum(dim=[1, 2, 3]), eps) |
|
).view(-1, 1, 1, 1) |
|
* y |
|
) |
|
|
|
|
|
def validate_empty_rays(ray_indices, t_start, t_end): |
|
if ray_indices.nelement() == 0: |
|
print("Warn Empty rays_indices!") |
|
ray_indices = torch.LongTensor([0]).to(ray_indices) |
|
t_start = torch.Tensor([0]).to(ray_indices) |
|
t_end = torch.Tensor([0]).to(ray_indices) |
|
return ray_indices, t_start, t_end |
|
|
|
|