File size: 10,341 Bytes
e3e5f9e
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
# ORIGINAL LICENSE
# SPDX-FileCopyrightText: Copyright (c) 2021-2022 NVIDIA CORPORATION & AFFILIATES. All rights reserved.
# SPDX-License-Identifier: LicenseRef-NvidiaProprietary
#
# Modified by Zexin He
# The modifications are subject to the same license as the original.


import itertools
import torch
import torch.nn as nn
import torch.nn.functional as F

from .utils.renderer import ImportanceRenderer, sample_from_planes
from .utils.ray_sampler import RaySampler
from ...utils.ops import get_rank


class OSGDecoder(nn.Module):
    """
    Triplane decoder that gives RGB and sigma values from sampled features.
    Using ReLU here instead of Softplus in the original implementation.
    
    Reference:
    EG3D: https://github.com/NVlabs/eg3d/blob/main/eg3d/training/triplane.py#L112
    """
    def __init__(self, n_features: int,
                 hidden_dim: int = 64, 
                 num_layers: int = 2, 
                 activation: nn.Module = nn.ReLU,
                 sdf_bias='sphere',
                 sdf_bias_params=0.5,
                 output_normal=True,
                 normal_type='finite_difference'):
        super().__init__()
        self.sdf_bias = sdf_bias
        self.sdf_bias_params = sdf_bias_params
        self.output_normal = output_normal
        self.normal_type = normal_type
        self.net = nn.Sequential(
            nn.Linear(3 * n_features, hidden_dim),
            activation(),
            *itertools.chain(*[[
                nn.Linear(hidden_dim, hidden_dim),
                activation(),
            ] for _ in range(num_layers - 2)]),
            nn.Linear(hidden_dim, 1 + 3),
        )
        # init all bias to zero
        for m in self.modules():
            if isinstance(m, nn.Linear):
                nn.init.zeros_(m.bias)

    def forward(self, ray_directions, sample_coordinates, plane_axes, planes, options):
        # Aggregate features by mean
        # sampled_features = sampled_features.mean(1)
        # Aggregate features by concatenation
        # torch.set_grad_enabled(True)
        # sample_coordinates.requires_grad_(True)

        sampled_features = sample_from_planes(plane_axes, planes, sample_coordinates, padding_mode='zeros', box_warp=options['box_warp'])

        
        _N, n_planes, _M, _C = sampled_features.shape
        sampled_features = sampled_features.permute(0, 2, 1, 3).reshape(_N, _M, n_planes*_C)
        x = sampled_features

        N, M, C = x.shape
        # x = x.contiguous().view(N*M, C)

        x = self.net(x)
        x = x.view(N, M, -1)
        rgb = torch.sigmoid(x[..., 1:])*(1 + 2*0.001) - 0.001  # Uses sigmoid clamping from MipNeRF
        
        sdf = x[..., 0:1]
        # import ipdb; ipdb.set_trace()
        # print(f'sample_coordinates shape: {sample_coordinates.shape}')
        # sdf = self.get_shifted_sdf(sample_coordinates, sdf)

        # calculate normal
        eps = 0.01
        offsets = torch.as_tensor(
            [[eps, 0.0, 0.0], [0.0, eps, 0.0], [0.0, 0.0, eps]]
        ).to(sample_coordinates)
        points_offset = (
            sample_coordinates[..., None, :] + offsets # Float[Tensor, "... 3 3"]
        ).clamp(options['sampler_bbox_min'], options['sampler_bbox_max'])

        sdf_offset_list = [self.forward_sdf(
            plane_axes,
            planes,
            points_offset[:,:,i,:],
            options
        ).unsqueeze(-2) for i in range(points_offset.shape[-2])] # Float[Tensor, "... 3 1"]
        # import ipdb; ipdb.set_trace()
        
        sdf_offset = torch.cat(sdf_offset_list, -2)
        sdf_grad = (sdf_offset[..., 0::1, 0] - sdf) / eps
        
        normal = F.normalize(sdf_grad, dim=-1).to(sdf.dtype)
        return {'rgb': rgb, 'sdf': sdf, 'normal': normal, 'sdf_grad': sdf_grad}
    
    def forward_sdf(self, plane_axes, planes, points_offset, options):

        sampled_features = sample_from_planes(plane_axes, planes, points_offset, padding_mode='zeros', box_warp=options['box_warp'])
        _N, n_planes, _M, _C = sampled_features.shape
        sampled_features = sampled_features.permute(0, 2, 1, 3).reshape(_N, _M, n_planes*_C)
        x = sampled_features

        N, M, C = x.shape
        # x = x.contiguous().view(N*M, C)

        x = self.net(x)
        x = x.view(N, M, -1)
        sdf = x[..., 0:1]
        # sdf = self.get_shifted_sdf(points_offset, sdf)
        return sdf
    
    def get_shifted_sdf(
        self, points, sdf
    ):
        if self.sdf_bias == "sphere":
            assert isinstance(self.sdf_bias_params, float)
            radius = self.sdf_bias_params
            sdf_bias = (points**2).sum(dim=-1, keepdim=True).sqrt() - radius
        else:
            raise ValueError(f"Unknown sdf bias {self.cfg.sdf_bias}")
        return sdf + sdf_bias.to(sdf.dtype)
    
    
class TriplaneSynthesizer(nn.Module):
    """
    Synthesizer that renders a triplane volume with planes and a camera.
    
    Reference:
    EG3D: https://github.com/NVlabs/eg3d/blob/main/eg3d/training/triplane.py#L19
    """

    DEFAULT_RENDERING_KWARGS = {
        'ray_start': 'auto',
        'ray_end': 'auto',
        'box_warp': 1.2,
        # 'box_warp': 1.,
        'white_back': True,
        'disparity_space_sampling': False,
        'clamp_mode': 'softplus',
        # 'sampler_bbox_min': -1,
        # 'sampler_bbox_max': 1.,
        'sampler_bbox_min': -0.6,
        'sampler_bbox_max': 0.6,
    }
    print('DEFAULT_RENDERING_KWARGS')
    print(DEFAULT_RENDERING_KWARGS)


    def __init__(self, triplane_dim: int, samples_per_ray: int, osg_decoder='default'):
        super().__init__()

        # attributes
        self.triplane_dim = triplane_dim
        self.rendering_kwargs = {
            **self.DEFAULT_RENDERING_KWARGS,
            'depth_resolution': samples_per_ray,
            'depth_resolution_importance': 0
            # 'depth_resolution': samples_per_ray // 2,
            # 'depth_resolution_importance': samples_per_ray // 2,
        }

        # renderings
        self.renderer = ImportanceRenderer()
        self.ray_sampler = RaySampler()
        # modules
        if osg_decoder == 'default':
            self.decoder = OSGDecoder(n_features=triplane_dim)
        else:
            raise NotImplementedError

    def forward(self, planes, ray_origins, ray_directions, render_size, bgcolor=None):
        # planes: (N, 3, D', H', W')
        # render_size: int
        assert ray_origins.dim() == 3, "ray_origins should be 3-dimensional"
        

        # Perform volume rendering
        rgb_samples, depth_samples, weights_samples, sdf_grad, normal_samples = self.renderer(
            planes, self.decoder, ray_origins, ray_directions, self.rendering_kwargs, bgcolor
        )
        N = planes.shape[0]

        # zhaohx : add for normals
        normal_samples = F.normalize(normal_samples, dim=-1)
        normal_samples = (normal_samples + 1.0) / 2.0   # for visualization
        normal_samples = torch.lerp(torch.zeros_like(normal_samples), normal_samples, weights_samples)

        # Reshape into 'raw' neural-rendered image
        Himg = Wimg = render_size
        rgb_images = rgb_samples.permute(0, 2, 1).reshape(N, rgb_samples.shape[-1], Himg, Wimg).contiguous()
        depth_images = depth_samples.permute(0, 2, 1).reshape(N, 1, Himg, Wimg)
        weight_images = weights_samples.permute(0, 2, 1).reshape(N, 1, Himg, Wimg)

        # zhaohx : add for normals
        normal_images = normal_samples.permute(0, 2, 1).reshape(N, normal_samples.shape[-1], Himg, Wimg).contiguous()

        # return {
        #     'images_rgb': rgb_images,
        #     'images_depth': depth_images,
        #     'images_weight': weight_images,
        # }

        return {
            'comp_rgb': rgb_images,
            'comp_depth': depth_images,
            'opacity': weight_images,
            'sdf_grad': sdf_grad,
            'comp_normal': normal_images
        }
        # 输出normal的话在这个return里加

    def forward_grid(self, planes, grid_size: int, aabb: torch.Tensor = None):
        # planes: (N, 3, D', H', W')
        # grid_size: int
        # aabb: (N, 2, 3)
        if aabb is None:
            aabb = torch.tensor([
                [self.rendering_kwargs['sampler_bbox_min']] * 3,
                [self.rendering_kwargs['sampler_bbox_max']] * 3,
            ], device=planes.device, dtype=planes.dtype).unsqueeze(0).repeat(planes.shape[0], 1, 1)
        assert planes.shape[0] == aabb.shape[0], "Batch size mismatch for planes and aabb"
        N = planes.shape[0]

        # create grid points for triplane query
        grid_points = []
        for i in range(N):
            grid_points.append(torch.stack(torch.meshgrid(
                torch.linspace(aabb[i, 0, 0], aabb[i, 1, 0], grid_size, device=planes.device),
                torch.linspace(aabb[i, 0, 1], aabb[i, 1, 1], grid_size, device=planes.device),
                torch.linspace(aabb[i, 0, 2], aabb[i, 1, 2], grid_size, device=planes.device),
                indexing='ij',
            ), dim=-1).reshape(-1, 3))
        cube_grid = torch.stack(grid_points, dim=0).to(planes.device)

        features = self.forward_points(planes, cube_grid)

        # reshape into grid
        features = {
            k: v.reshape(N, grid_size, grid_size, grid_size, -1)
            for k, v in features.items()
        }
        return features

    def forward_points(self, planes, points: torch.Tensor, chunk_size: int = 2**20):
        # planes: (N, 3, D', H', W')
        # points: (N, P, 3)
        N, P = points.shape[:2]

        # query triplane in chunks
        outs = []
        for i in range(0, points.shape[1], chunk_size):
            chunk_points = points[:, i:i+chunk_size]

            # query triplane
            # chunk_out = self.renderer.run_model_activated(
            chunk_out = self.renderer.run_model(
                planes=planes,
                decoder=self.decoder,
                sample_coordinates=chunk_points,
                sample_directions=torch.zeros_like(chunk_points),
                options=self.rendering_kwargs,
            )
            outs.append(chunk_out)

        # concatenate the outputs
        point_features = {
            k: torch.cat([out[k] for out in outs], dim=1)
            for k in outs[0].keys()
        }
        return point_features