yzabc007 commited on
Commit
ea6f712
·
1 Parent(s): 5db0911

Update space

Browse files
Files changed (1) hide show
  1. src/populate.py +6 -5
src/populate.py CHANGED
@@ -18,15 +18,16 @@ def get_model_leaderboard_df(results_path: str, requests_path: str="", cols: lis
18
  df = pd.DataFrame.from_records(all_data_json)
19
 
20
  df = df[benchmark_cols]
21
- df = df.dropna(subset=benchmark_cols)
22
 
23
- if rank_col:
 
24
  df = df.sort_values(by=[rank_col[0]], ascending=True)
25
  else: # when rank_col is empty, sort by averaging all the benchmarks, except the first one
26
- avg_rank = df.iloc[:, 1:].mean(axis=1)
27
  df["Average Rank"] = avg_rank
28
  df = df.sort_values(by=["Average Rank"], ascending=True)
29
-
30
 
31
  # df = df.sort_values(by=[AutoEvalColumn.score.name], ascending=True)
32
  # df[AutoEvalColumn.rank.name] = df[AutoEvalColumn.score.name].rank(ascending=True, method="min")
@@ -42,7 +43,7 @@ def get_model_leaderboard_df(results_path: str, requests_path: str="", cols: lis
42
  # df = df[cols].round(decimals=2)
43
 
44
  # filter out if any of the benchmarks have not been produced
45
- df = df[has_no_nan_values(df, benchmark_cols)]
46
  return df
47
 
48
 
 
18
  df = pd.DataFrame.from_records(all_data_json)
19
 
20
  df = df[benchmark_cols]
21
+ print(df.head())
22
 
23
+ if rank_col: # if there is one col in rank_col, sort by that column and remove NaN values
24
+ df = df.dropna(subset=benchmark_cols)
25
  df = df.sort_values(by=[rank_col[0]], ascending=True)
26
  else: # when rank_col is empty, sort by averaging all the benchmarks, except the first one
27
+ avg_rank = df.iloc[:, 1:].mean(axis=1) # we'll skip NaN, instrad of deleting the whole row
28
  df["Average Rank"] = avg_rank
29
  df = df.sort_values(by=["Average Rank"], ascending=True)
30
+
31
 
32
  # df = df.sort_values(by=[AutoEvalColumn.score.name], ascending=True)
33
  # df[AutoEvalColumn.rank.name] = df[AutoEvalColumn.score.name].rank(ascending=True, method="min")
 
43
  # df = df[cols].round(decimals=2)
44
 
45
  # filter out if any of the benchmarks have not been produced
46
+ # df = df[has_no_nan_values(df, benchmark_cols)]
47
  return df
48
 
49