|
import json |
|
import os |
|
|
|
import pandas as pd |
|
import numpy as np |
|
|
|
from src.display.formatting import has_no_nan_values, make_clickable_model |
|
from src.display.utils import AutoEvalColumn, EvalQueueColumn |
|
from src.leaderboard.read_evals import get_raw_eval_results, get_raw_model_results |
|
|
|
|
|
|
|
|
|
def get_model_leaderboard_df(results_path: str, requests_path: str="", cols: list=[], benchmark_cols: list=[], rank_col: list=[]) -> pd.DataFrame: |
|
"""Creates a dataframe from all the individual experiment results""" |
|
raw_data = get_raw_model_results(results_path) |
|
all_data_json = [v.to_dict() for v in raw_data] |
|
|
|
|
|
df = pd.DataFrame.from_records(all_data_json) |
|
|
|
df = df[benchmark_cols] |
|
|
|
|
|
|
|
|
|
if rank_col and rank_col[0] not in ["sort_by_score", "sort_by_rank"]: |
|
|
|
df = df.dropna(subset=rank_col) |
|
df = df.fillna(0.00) |
|
|
|
df = df.sort_values(by=[rank_col[0]], ascending=True) |
|
|
|
|
|
|
|
for col in benchmark_cols: |
|
if 'Std dev' in col or 'Score' in col: |
|
df[col] = (df[col]).map('{:.2f}'.format) |
|
df[col] = df[col].round(decimals=2) |
|
|
|
elif rank_col and rank_col[0] == "sort_by_score": |
|
start_idx = rank_col[1] |
|
end_idx = rank_col[2] |
|
avg_scores = df.iloc[:, start_idx:end_idx].mean(axis=1) |
|
df.insert(1, "Average Score", avg_scores) |
|
|
|
df["Average Score"] = avg_scores.round(decimals=4) |
|
df = df.sort_values(by=["Average Score"], ascending=False) |
|
df["Average Score"] = df["Average Score"].map('{:.2f}'.format) |
|
|
|
|
|
|
|
|
|
|
|
rank = np.arange(1, len(df)+1) |
|
df.insert(0, 'Rank', rank) |
|
|
|
for col in benchmark_cols: |
|
if 'Std dev' in col or 'Score' in col: |
|
df[col] = (df[col]).map('{:.2f}'.format) |
|
df[col] = df[col].round(decimals=2) |
|
|
|
|
|
df.replace("nan", '--', inplace=True) |
|
|
|
elif rank_col and rank_col[0] == "sort_by_rank": |
|
|
|
start_idx = rank_col[1] |
|
end_idx = rank_col[2] |
|
avg_rank = df.iloc[:, start_idx:end_idx].mean(axis=1) |
|
df.insert(1, "Average Rank", avg_rank) |
|
|
|
df["Average Rank"] = avg_rank.round(decimals=4) |
|
df = df.sort_values(by=["Average Rank"], ascending=True) |
|
df["Average Rank"] = df["Average Rank"].map('{:.2f}'.format) |
|
|
|
|
|
df = df.fillna('--') |
|
|
|
rank = np.arange(1, len(df)+1) |
|
df.insert(0, 'Rank', rank) |
|
|
|
df.style.background_gradient(cmap='coolwarm', subset=benchmark_cols) |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
return df |
|
|
|
|
|
|
|
def get_leaderboard_df(results_path: str, requests_path: str, cols: list, benchmark_cols: list) -> pd.DataFrame: |
|
"""Creates a dataframe from all the individual experiment results""" |
|
raw_data = get_raw_eval_results(results_path, requests_path) |
|
|
|
all_data_json = [v.to_dict() for v in raw_data] |
|
|
|
df = pd.DataFrame.from_records(all_data_json) |
|
df = df.sort_values(by=[AutoEvalColumn.average.name], ascending=False) |
|
for col in cols: |
|
if col not in df.columns: |
|
df[col] = None |
|
else: |
|
df[col] = df[col].round(decimals=2) |
|
|
|
|
|
df = df[has_no_nan_values(df, benchmark_cols)] |
|
return df |
|
|
|
|
|
def get_evaluation_queue_df(save_path: str, cols: list) -> list[pd.DataFrame]: |
|
"""Creates the different dataframes for the evaluation queues requestes""" |
|
entries = [entry for entry in os.listdir(save_path) if not entry.startswith(".")] |
|
all_evals = [] |
|
|
|
for entry in entries: |
|
if ".json" in entry: |
|
file_path = os.path.join(save_path, entry) |
|
with open(file_path) as fp: |
|
data = json.load(fp) |
|
|
|
data[EvalQueueColumn.model.name] = make_clickable_model(data["model"]) |
|
data[EvalQueueColumn.revision.name] = data.get("revision", "main") |
|
|
|
all_evals.append(data) |
|
elif ".md" not in entry: |
|
|
|
sub_entries = [e for e in os.listdir(f"{save_path}/{entry}") if os.path.isfile(e) and not e.startswith(".")] |
|
for sub_entry in sub_entries: |
|
file_path = os.path.join(save_path, entry, sub_entry) |
|
with open(file_path) as fp: |
|
data = json.load(fp) |
|
|
|
data[EvalQueueColumn.model.name] = make_clickable_model(data["model"]) |
|
data[EvalQueueColumn.revision.name] = data.get("revision", "main") |
|
all_evals.append(data) |
|
|
|
pending_list = [e for e in all_evals if e["status"] in ["PENDING", "RERUN"]] |
|
running_list = [e for e in all_evals if e["status"] == "RUNNING"] |
|
finished_list = [e for e in all_evals if e["status"].startswith("FINISHED") or e["status"] == "PENDING_NEW_EVAL"] |
|
df_pending = pd.DataFrame.from_records(pending_list, columns=cols) |
|
df_running = pd.DataFrame.from_records(running_list, columns=cols) |
|
df_finished = pd.DataFrame.from_records(finished_list, columns=cols) |
|
return df_finished[cols], df_running[cols], df_pending[cols] |
|
|