de-arena / src /populate.py
yzabc007's picture
Update space
efb8c59
raw
history blame
7.41 kB
import json
import os
import pandas as pd
import numpy as np
from src.display.formatting import has_no_nan_values, make_clickable_model
from src.display.utils import AutoEvalColumn, EvalQueueColumn
from src.leaderboard.read_evals import get_raw_eval_results, get_raw_model_results
def get_model_leaderboard_df(results_path: str, requests_path: str="", cols: list=[], benchmark_cols: list=[], rank_col: list=[]) -> pd.DataFrame:
"""Creates a dataframe from all the individual experiment results"""
raw_data = get_raw_model_results(results_path)
all_data_json = [v.to_dict() for v in raw_data]
# assert len(rank_col) <= 1, "Only one column can be selected for ranking"
df = pd.DataFrame.from_records(all_data_json)
df = df[benchmark_cols]
# print(df.head())
# if there is one col in rank_col, this is an isolated dimension to rank by
# sort by that selected column and remove NaN values
if rank_col and rank_col[0] not in ["sort_by_score", "sort_by_rank"]:
# df = df.dropna(subset=benchmark_cols)
df = df.dropna(subset=rank_col)
df = df.fillna(0.00)
# print(df[rank_col[0]])
df = df.sort_values(by=[rank_col[0]], ascending=True)
# print(rank_col, benchmark_cols)
# print(df.head())
for col in benchmark_cols:
if 'Std dev' in col or 'Score' in col:
df[col] = (df[col]).map('{:.2f}'.format)
df[col] = df[col].round(decimals=2)
elif rank_col and rank_col[0] == "sort_by_score": # sorting by averaging all benchmark cols, except cols before offset_idx
start_idx = rank_col[1]
end_idx = rank_col[2]
avg_scores = df.iloc[:, start_idx:end_idx].mean(axis=1)
df.insert(1, "Average Score", avg_scores)
df["Average Score"] = avg_scores.round(decimals=4)
df = df.sort_values(by=["Average Score"], ascending=False)
df["Average Score"] = df["Average Score"].map('{:.2f}'.format)
# df = df.drop(columns=benchmark_cols[offset_idx:])
# print(benchmark_cols)
# print(df.head())
# insert a rank column
rank = np.arange(1, len(df)+1)
df.insert(0, 'Rank', rank)
for col in benchmark_cols:
if 'Std dev' in col or 'Score' in col:
df[col] = (df[col]).map('{:.2f}'.format)
df[col] = df[col].round(decimals=2)
# df = df.fillna('--')
df.replace("nan", '--', inplace=True)
elif rank_col and rank_col[0] == "sort_by_rank":
# else: # when rank_col, the first in benchmark_cols is empty, sort by averaging all the benchmarks, except the first one
start_idx = rank_col[1]
end_idx = rank_col[2]
avg_rank = df.iloc[:, start_idx:end_idx].mean(axis=1)
df.insert(1, "Average Rank", avg_rank)
df["Average Rank"] = avg_rank.round(decimals=4)
df = df.sort_values(by=["Average Rank"], ascending=True)
df["Average Rank"] = df["Average Rank"].map('{:.2f}'.format)
# we'll skip NaN, instrad of deleting the whole row
df = df.fillna('--')
# insert a rank column
rank = np.arange(1, len(df)+1)
df.insert(0, 'Rank', rank)
df.style.background_gradient(cmap='coolwarm', subset=benchmark_cols)
# for col in benchmark_cols:
# # print(col)
# # if 'Std dev' in col or 'Score' in col:
# if 'Std dev' in col or 'Score' in col:
# # if set(['Chemistry', 'Reasoning']).intersection(set(col.split())):
# # df[col] = (df[col]).map('{:.2f}'.format)
# # else:
# # df[col] = (df[col]*100).map('{:.2f}'.format)
# # if "Chemistry" in col or "C++" in col:
# if "Chemistry" in col or "C++" in col or "Overall" in col or "Probability" in col or "Logical" in col:
# df[col] = (df[col]).map('{:.2f}'.format)
# else:
# df[col] = (df[col]*100).map('{:.2f}'.format)
# df[col] = df[col].round(decimals=2)
# df = df.sort_values(by=[AutoEvalColumn.score.name], ascending=True)
# df[AutoEvalColumn.rank.name] = df[AutoEvalColumn.score.name].rank(ascending=True, method="min")
# print(cols) # []
# print(df.columns) # ['eval_name', 'Model', 'Hub License', 'Organization', 'Knowledge cutoff', 'Overall']
# exit()
# only keep the columns that are in the cols list
# for col in cols:
# if col not in df.columns:
# df[col] = None
# else:
# df = df[cols].round(decimals=2)
# filter out if any of the benchmarks have not been produced
# df = df[has_no_nan_values(df, benchmark_cols)]
return df
def get_leaderboard_df(results_path: str, requests_path: str, cols: list, benchmark_cols: list) -> pd.DataFrame:
"""Creates a dataframe from all the individual experiment results"""
raw_data = get_raw_eval_results(results_path, requests_path)
# raw_data = get_raw_model_results(results_path)
all_data_json = [v.to_dict() for v in raw_data]
df = pd.DataFrame.from_records(all_data_json)
df = df.sort_values(by=[AutoEvalColumn.average.name], ascending=False)
for col in cols:
if col not in df.columns:
df[col] = None
else:
df[col] = df[col].round(decimals=2)
# filter out if any of the benchmarks have not been produced
df = df[has_no_nan_values(df, benchmark_cols)]
return df
def get_evaluation_queue_df(save_path: str, cols: list) -> list[pd.DataFrame]:
"""Creates the different dataframes for the evaluation queues requestes"""
entries = [entry for entry in os.listdir(save_path) if not entry.startswith(".")]
all_evals = []
for entry in entries:
if ".json" in entry:
file_path = os.path.join(save_path, entry)
with open(file_path) as fp:
data = json.load(fp)
data[EvalQueueColumn.model.name] = make_clickable_model(data["model"])
data[EvalQueueColumn.revision.name] = data.get("revision", "main")
all_evals.append(data)
elif ".md" not in entry:
# this is a folder
sub_entries = [e for e in os.listdir(f"{save_path}/{entry}") if os.path.isfile(e) and not e.startswith(".")]
for sub_entry in sub_entries:
file_path = os.path.join(save_path, entry, sub_entry)
with open(file_path) as fp:
data = json.load(fp)
data[EvalQueueColumn.model.name] = make_clickable_model(data["model"])
data[EvalQueueColumn.revision.name] = data.get("revision", "main")
all_evals.append(data)
pending_list = [e for e in all_evals if e["status"] in ["PENDING", "RERUN"]]
running_list = [e for e in all_evals if e["status"] == "RUNNING"]
finished_list = [e for e in all_evals if e["status"].startswith("FINISHED") or e["status"] == "PENDING_NEW_EVAL"]
df_pending = pd.DataFrame.from_records(pending_list, columns=cols)
df_running = pd.DataFrame.from_records(running_list, columns=cols)
df_finished = pd.DataFrame.from_records(finished_list, columns=cols)
return df_finished[cols], df_running[cols], df_pending[cols]