de-arena / src /populate.py
yzabc007's picture
Update space
056a0a0
raw
history blame
4.72 kB
import json
import os
import pandas as pd
from src.display.formatting import has_no_nan_values, make_clickable_model
from src.display.utils import AutoEvalColumn, EvalQueueColumn
from src.leaderboard.read_evals import get_raw_eval_results, get_raw_model_results
def get_model_leaderboard_df(results_path: str, requests_path: str="", cols: list=[], benchmark_cols: list=[], rank_col: list=[]) -> pd.DataFrame:
"""Creates a dataframe from all the individual experiment results"""
raw_data = get_raw_model_results(results_path)
all_data_json = [v.to_dict() for v in raw_data]
df = pd.DataFrame.from_records(all_data_json)
df = df[benchmark_cols]
# print(df.head())
if rank_col: # if there is one col in rank_col, sort by that column and remove NaN values
df = df.dropna(subset=benchmark_cols)
df = df.sort_values(by=[rank_col[0]], ascending=True)
else: # when rank_col is empty, sort by averaging all the benchmarks, except the first one
avg_rank = df.iloc[:, 1:].mean(axis=1) # we'll skip NaN, instrad of deleting the whole row
df["Average Rank"] = avg_rank
df = df.sort_values(by=["Average Rank"], ascending=True)
df = df.fillna('--')
for col in benchmark_cols:
# print(col)
# if 'Std dev' in col or 'Score' in col:
if 'Std dev' in col or 'Score' in col:
df[col] = (df[col]*100).map('{:.2f}'.format)
# df[col] = df[col].round(decimals=2)
# df = df.sort_values(by=[AutoEvalColumn.score.name], ascending=True)
# df[AutoEvalColumn.rank.name] = df[AutoEvalColumn.score.name].rank(ascending=True, method="min")
# print(cols) # []
# print(df.columns) # ['eval_name', 'Model', 'Hub License', 'Organization', 'Knowledge cutoff', 'Overall']
# exit()
# only keep the columns that are in the cols list
# for col in cols:
# if col not in df.columns:
# df[col] = None
# else:
# df = df[cols].round(decimals=2)
# filter out if any of the benchmarks have not been produced
# df = df[has_no_nan_values(df, benchmark_cols)]
return df
def get_leaderboard_df(results_path: str, requests_path: str, cols: list, benchmark_cols: list) -> pd.DataFrame:
"""Creates a dataframe from all the individual experiment results"""
raw_data = get_raw_eval_results(results_path, requests_path)
# raw_data = get_raw_model_results(results_path)
all_data_json = [v.to_dict() for v in raw_data]
df = pd.DataFrame.from_records(all_data_json)
df = df.sort_values(by=[AutoEvalColumn.average.name], ascending=False)
for col in cols:
if col not in df.columns:
df[col] = None
else:
df[col] = df[col].round(decimals=2)
# filter out if any of the benchmarks have not been produced
df = df[has_no_nan_values(df, benchmark_cols)]
return df
def get_evaluation_queue_df(save_path: str, cols: list) -> list[pd.DataFrame]:
"""Creates the different dataframes for the evaluation queues requestes"""
entries = [entry for entry in os.listdir(save_path) if not entry.startswith(".")]
all_evals = []
for entry in entries:
if ".json" in entry:
file_path = os.path.join(save_path, entry)
with open(file_path) as fp:
data = json.load(fp)
data[EvalQueueColumn.model.name] = make_clickable_model(data["model"])
data[EvalQueueColumn.revision.name] = data.get("revision", "main")
all_evals.append(data)
elif ".md" not in entry:
# this is a folder
sub_entries = [e for e in os.listdir(f"{save_path}/{entry}") if os.path.isfile(e) and not e.startswith(".")]
for sub_entry in sub_entries:
file_path = os.path.join(save_path, entry, sub_entry)
with open(file_path) as fp:
data = json.load(fp)
data[EvalQueueColumn.model.name] = make_clickable_model(data["model"])
data[EvalQueueColumn.revision.name] = data.get("revision", "main")
all_evals.append(data)
pending_list = [e for e in all_evals if e["status"] in ["PENDING", "RERUN"]]
running_list = [e for e in all_evals if e["status"] == "RUNNING"]
finished_list = [e for e in all_evals if e["status"].startswith("FINISHED") or e["status"] == "PENDING_NEW_EVAL"]
df_pending = pd.DataFrame.from_records(pending_list, columns=cols)
df_running = pd.DataFrame.from_records(running_list, columns=cols)
df_finished = pd.DataFrame.from_records(finished_list, columns=cols)
return df_finished[cols], df_running[cols], df_pending[cols]