File size: 42,535 Bytes
da92625 979b424 da92625 606c189 da96aa6 da92625 bfb3ae7 da92625 8d7f3c1 da92625 8d7f3c1 da92625 a6bb893 69f5df3 979b424 12e16dd 550d12e da92625 a4bf183 664fbb8 da92625 aee5c0e 785b751 37b3751 2642851 37b3751 11b03a4 6d76e82 11b03a4 4bc3bc0 11b03a4 37b3751 da92625 606c189 3d466ff 11b03a4 3d466ff b84a05a a40f62f 3d466ff c156aae accff44 c156aae 887dd92 da92625 d36c83d ee84fd2 d36c83d accff44 9f4c149 accff44 785b751 accff44 8643afc accff44 d36c83d 79d1bee 6c01f70 79d1bee 6c01f70 785b751 79d1bee 6c01f70 79d1bee 6c01f70 5db0911 ee84fd2 79d1bee 6c01f70 79d1bee 6c01f70 785b751 79d1bee 6c01f70 79d1bee 6c01f70 bed7fbb 8ef75a7 f99d80b aee5c0e 9f4c149 aee5c0e 606c189 aee5c0e 785b751 aee5c0e 785b751 aee5c0e bed7fbb 79d1bee c156aae 79d1bee 8ef75a7 79d1bee c156aae 79d1bee 8ef75a7 37b3751 8ef75a7 37b3751 e19ffb4 8ef75a7 37b3751 8ef75a7 37b3751 e19ffb4 8ef75a7 37b3751 8ef75a7 37b3751 bed7fbb bac050f f99d80b 606c189 9f4c149 606c189 9f4c149 606c189 9f4c149 606c189 9f4c149 606c189 9f4c149 979bed2 606c189 5f0ee8c 79d1bee c156aae 79d1bee bac050f 79d1bee c156aae 79d1bee 8ef75a7 79d1bee 8ef75a7 37b3751 8ef75a7 37b3751 5f0ee8c 8ef75a7 37b3751 8ef75a7 37b3751 5f0ee8c bac050f 606c189 979bed2 606c189 979bed2 79d1bee 785b751 79d1bee 785b751 79d1bee 8ef75a7 785b751 79d1bee 785b751 79d1bee 785b751 79d1bee 785b751 79d1bee 8ef75a7 979bed2 e91235d 785b751 2f5cc84 887dd92 606c189 979bed2 606c189 979bed2 3d466ff 979bed2 3d466ff 979bed2 3d466ff 979bed2 8d7f3c1 5f0ee8c 8d7f3c1 bac050f 6d76e82 bac050f 5f0ee8c 3d466ff f99d80b 887dd92 4e841d6 8e21015 7fde741 979bed2 7fde741 9ce778c 4e841d6 c1e1ef9 4e841d6 887dd92 da92625 2a7d8c1 174a614 da92625 174a614 da92625 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 |
import gradio as gr
from gradio_leaderboard import Leaderboard, ColumnFilter, SelectColumns, SearchColumns
import pandas as pd
from apscheduler.schedulers.background import BackgroundScheduler
from huggingface_hub import snapshot_download
from src.about import (
CITATION_BUTTON_LABEL,
CITATION_BUTTON_TEXT,
EVALUATION_QUEUE_TEXT,
INTRODUCTION_TEXT,
LLM_BENCHMARKS_TEXT,
TITLE,
SUB_TITLE,
EXTERNAL_LINKS,
COMING_SOON_TEXT
)
from src.display.css_html_js import custom_css
from src.display.utils import (
BENCHMARK_COLS,
COLS,
EVAL_COLS,
EVAL_TYPES,
AutoEvalColumn,
ModelType,
fields,
WeightType,
Precision
)
from src.envs import API, EVAL_REQUESTS_PATH, EVAL_RESULTS_PATH, QUEUE_REPO, REPO_ID, RESULTS_REPO, TOKEN
from src.populate import get_evaluation_queue_df, get_leaderboard_df, get_model_leaderboard_df
from src.submission.submit import add_new_eval
def restart_space():
API.restart_space(repo_id=REPO_ID)
### Space initialisation
try:
print(EVAL_REQUESTS_PATH)
snapshot_download(
repo_id=QUEUE_REPO, local_dir=EVAL_REQUESTS_PATH, repo_type="dataset", tqdm_class=None, etag_timeout=30, token=TOKEN
)
except Exception:
restart_space()
try:
print(EVAL_RESULTS_PATH)
snapshot_download(
repo_id=RESULTS_REPO, local_dir=EVAL_RESULTS_PATH, repo_type="dataset", tqdm_class=None, etag_timeout=30, token=TOKEN
)
except Exception:
restart_space()
LEADERBOARD_DF = get_leaderboard_df(EVAL_RESULTS_PATH, EVAL_REQUESTS_PATH, COLS, BENCHMARK_COLS)
(
finished_eval_queue_df,
running_eval_queue_df,
pending_eval_queue_df,
) = get_evaluation_queue_df(EVAL_REQUESTS_PATH, EVAL_COLS)
def init_leaderboard(dataframe):
if dataframe is None or dataframe.empty:
raise ValueError("Leaderboard DataFrame is empty or None.")
return Leaderboard(
value=dataframe,
datatype=[c.type for c in fields(AutoEvalColumn)],
select_columns=None,
# SelectColumns(
# default_selection=[c.name for c in fields(AutoEvalColumn) if c.displayed_by_default],
# cant_deselect=[c.name for c in fields(AutoEvalColumn) if c.never_hidden],
# label="Select Columns to Display:",
# ),
# search_columns=None,
# search_columns=[AutoEvalColumn.model.name, AutoEvalColumn.license.name],
search_columns=SearchColumns(primary_column=AutoEvalColumn.model.name, secondary_columns=[],
placeholder="Search by the model name",
label="Searching"),
hide_columns=[c.name for c in fields(AutoEvalColumn) if c.hidden],
filter_columns=None,
# [
# ColumnFilter(AutoEvalColumn.model_type.name, type="checkboxgroup", label="Model types"),
# ColumnFilter(AutoEvalColumn.precision.name, type="checkboxgroup", label="Precision"),
# ColumnFilter(
# AutoEvalColumn.params.name,
# type="slider",
# min=0.01,
# max=150,
# label="Select the number of parameters (B)",
# ),
# ColumnFilter(
# AutoEvalColumn.still_on_hub.name, type="boolean", label="Deleted/incomplete", default=True
# ),
# ],
# bool_checkboxgroup_label="Hide models",
interactive=False,
)
# model_result_path = "./src/results/models_2024-10-20-23:34:57.242641.json"
# model_result_path = "./src/results/models_2024-10-24-08:08:59.127307.json"
model_result_path = "./src/results/models_2024-11-08-08:36:00.464224.json"
# model_leaderboard_df = get_model_leaderboard_df(model_result_path)
def overall_leaderboard(dataframe):
if dataframe is None or dataframe.empty:
raise ValueError("Leaderboard DataFrame is empty or None.")
return Leaderboard(
value=dataframe,
datatype=[c.type for c in fields(AutoEvalColumn)],
select_columns=None,
search_columns=SearchColumns(primary_column=AutoEvalColumn.model.name, secondary_columns=[],
placeholder="Search by the model name",
label="Searching"),
hide_columns=[c.name for c in fields(AutoEvalColumn) if c.hidden],
filter_columns=None,
interactive=False,
)
# Your leaderboard name
TITLE = """<h1 align="center" id="space-title">๐
Decentralized Arena Leaderboard</h1>"""
SUB_TITLE = """<h2 align="center" id="space-subtitle">Automated, Robust, and Transparent LLM Evaluation for Numerous Dimensions</h2>"""
# <a href="https://github.com/maitrix-org/de-arena" target="_blank">GitHub</a> |
EXTERNAL_LINKS = """
<h2 align="center" id="space-links">
<a href="https://de-arena.maitrix.org/" target="_blank">Blog</a> |
<a href="https://de-arena.maitrix.org/images/Heading.mp4" target="">Video</a> |
<a href="https://maitrix.org/" target="_blank">@Maitrix.org</a> |
<a href="https://www.llm360.ai/" target="_blank">@LLM360</a>
</h2>
"""
# What does your leaderboard evaluate?
INTRODUCTION_TEXT = """
**Decentralized Arena** automates and scales "Chatbot Arena" for LLM evaluation across various fine-grained dimensions
(e.g., math โ algebra, geometry, probability; logical reasoning, social reasoning, biology, chemistry, โฆ).
The evaluation is decentralized and democratic, with all LLMs participating in evaluating others.
It achieves a 95\% correlation with Chatbot Arena's overall rankings, while being fully transparent and reproducible.
"""
demo = gr.Blocks(css=custom_css)
with demo:
gr.HTML(TITLE)
gr.HTML(SUB_TITLE)
gr.HTML(EXTERNAL_LINKS)
# gr.Markdown(INTRODUCTION_TEXT, elem_classes="markdown-text")
# gr.HTML('<p style="font-size:15px;">This is a larger text using HTML in Markdown.</p>')
INTRODUCTION_TEXT_FONT_SIZE = 16
INTRODUCTION_TEXT = (
f'<p style="font-size:{INTRODUCTION_TEXT_FONT_SIZE}px;">'
'<strong>Decentralized Arena</strong> automates, scales, and accelerates <a href="https://lmarena.ai/">Chatbot Arena</a> '
'for large language model (LLM) evaluation across diverse, fine-grained dimensions, '
'such as mathematics (algebra, geometry, probability), logical reasoning, social reasoning, science (chemistry, physics, biology), or any user-defined dimensions. '
'The evaluation is decentralized and democratic, with all participating LLMs assessing each other to ensure unbiased and fair results. '
'With a 95% correlation to Chatbot Arena\'s overall rankings, the system is fully transparent and reproducible.'
'</p>'
f'<p style="font-size:{INTRODUCTION_TEXT_FONT_SIZE}px;">'
'We actively invite <b>model developers</b> to participate and expedite their benchmarking efforts '
'and encourage <b>data stakeholders</b> to freely define and evaluate dimensions of interest for their own objectives.'
'</p>'
)
gr.HTML(INTRODUCTION_TEXT)
'''
TEXT = (
f'<p style="font-size:{INTRODUCTION_TEXT_FONT_SIZE}px;">'
''
'</p>'
)
gr.HTML(TEXT)
'''
with gr.Tabs(elem_classes="tab-buttons") as tabs:
with gr.TabItem("๐
Overview", elem_id="llm-benchmark-tab-table", id=0):
# DESCRIPTION_TEXT = """
# Total #models: 57 (Last updated: 2024-10-21)
# This page prvovides a comprehensive overview of model ranks across various dimensions, based on their averaged ranks.
# (Missing values are due to the slow or problemtic model responses to be fixed soom.)
# """
# gr.Markdown(DESCRIPTION_TEXT, elem_classes="markdown-text")
TEXT = (
f'<p style="font-size:{INTRODUCTION_TEXT_FONT_SIZE}px;">'
# '<b>Total #models: 57 (Last updated: 2024-10-21)</b>'
'<b>Total #models: 62 (Last updated: 2024-11-08)</b>'
'</p>'
f'<p style="font-size:{INTRODUCTION_TEXT_FONT_SIZE}px;">'
'This page prvovides a comprehensive overview of model ranks across various dimensions, based on their averaged ranks or scores.'
'(Missing values are due to the slow or problemtic model responses to be fixed soom.)'
'</p>'
# '<p style="font-size:{INTRODUCTION_TEXT_FONT_SIZE}px;">'
# 'We present '
# '</p>'
)
gr.HTML(TEXT)
with gr.TabItem("โญ Sort by Rank", elem_id="overall_sort_by_rank_subtab", id=0, elem_classes="subtab"):
leaderboard = overall_leaderboard(
get_model_leaderboard_df(
model_result_path,
benchmark_cols=[
# AutoEvalColumn.rank_overall.name,
AutoEvalColumn.model.name,
AutoEvalColumn.rank_math_algebra.name,
AutoEvalColumn.rank_math_geometry.name,
AutoEvalColumn.rank_math_probability.name,
AutoEvalColumn.rank_reason_logical.name,
AutoEvalColumn.rank_reason_social.name,
AutoEvalColumn.rank_chemistry.name,
AutoEvalColumn.rank_biology.name,
AutoEvalColumn.rank_physics.name,
AutoEvalColumn.rank_overall.name,
# AutoEvalColumn.rank_cpp.name,
],
rank_col=['sort_by_rank', 1, 8],
)
)
with gr.TabItem("โญ Sort by Score", elem_id="overall_sort_by_score_subtab", id=1, elem_classes="subtab"):
leaderboard = overall_leaderboard(
get_model_leaderboard_df(
model_result_path,
benchmark_cols=[
# AutoEvalColumn.rank_overall.name,
AutoEvalColumn.model.name,
# AutoEvalColumn.license.name,
# AutoEvalColumn.organization.name,
# AutoEvalColumn.knowledge_cutoff.name,
AutoEvalColumn.score_math_algebra.name,
AutoEvalColumn.score_math_geometry.name,
AutoEvalColumn.score_math_probability.name,
AutoEvalColumn.score_reason_logical.name,
AutoEvalColumn.score_reason_social.name,
AutoEvalColumn.score_chemistry.name,
AutoEvalColumn.score_biology.name,
AutoEvalColumn.score_physics.name,
AutoEvalColumn.score_overall.name,
# AutoEvalColumn.score_cpp.name,
# AutoEvalColumn.rank_overall.name,
# AutoEvalColumn.rank_math_algebra.name,
# AutoEvalColumn.rank_math_geometry.name,
# AutoEvalColumn.rank_math_probability.name,
# AutoEvalColumn.rank_reason_logical.name,
# AutoEvalColumn.rank_reason_social.name,
# AutoEvalColumn.rank_chemistry.name,
# AutoEvalColumn.rank_cpp.name,
],
rank_col=['sort_by_score', 1, 8],
)
)
with gr.TabItem("๐ข Math", elem_id="math-tab-table", id=2):
# DESCRIPTION_TEXT="""
# Algebra, Geometry, and Probability are the current three main math domains in the leaderboard.
# To mitigate the potential impact of data contimination, we have carefully selected the datasets from various sources.
# We prioritize **recent math datasets** and focus on **college and beyond level** math questions.
# The current datasets include
# [MATH](https://arxiv.org/abs/2103.03874),
# [MATH-500](https://github.com/openai/prm800k/tree/main/prm800k/math_splits),
# [Omni](https://omni-math.github.io/),
# [MathQA](https://arxiv.org/abs/1905.13319),
# [MathBench](https://arxiv.org/abs/2405.12209),
# [SciBench](https://arxiv.org/abs/2307.10635), and more!
# We plan to include more math domains, such as calculus, number theory, and more in the future.
# """
# gr.Markdown(DESCRIPTION_TEXT, elem_classes="markdown-text")
TEXT = (
f'<p style="font-size:{INTRODUCTION_TEXT_FONT_SIZE}px;">'
'Algebra, Geometry, and Probability are the current three main math domains in the leaderboard. '
'To mitigate the potential impact of data contimination, we have carefully selected the datasets from various sources. '
'We prioritize <b>recent math datasets</b> and focus on <b>college and beyond level</b> math questions. '
'The current datasets include</b>'
'<a href="https://arxiv.org/abs/2103.03874">MATH</a>, '
'<a href="htt ps://github.com/openai/prm800k/tree/main/prm800k/math_splits">MATH-500</a>, '
'<a href="https://omni-math.github.io/">Omni</a>, '
'<a href="https://arxiv.org/abs/1905.13319">MathQA</a>, '
'<a href="https://arxiv.org/abs/2405.12209">MathBench</a>, '
'<a href="https://arxiv.org/abs/2307.10635">SciBench</a>, and more! '
'</p>'
f'<p style="font-size:{INTRODUCTION_TEXT_FONT_SIZE}px;">'
'We plan to include more math domains, such as calculus, number theory, and more in the future. '
'</p>'
# '<p style="font-size:{INTRODUCTION_TEXT_FONT_SIZE}px;">'
# 'We present '
# '</p>'
)
gr.HTML(TEXT)
# leaderboard = init_leaderboard(LEADERBOARD_DF)
with gr.TabItem("๐ Overview", elem_id="math_overview_subtab", id=0, elem_classes="subtab"):
with gr.TabItem("โญ Sort by Rank", elem_id="math_overview_sort_by_rank_subtab", id=0, elem_classes="subtab"):
leaderboard = overall_leaderboard(
get_model_leaderboard_df(
model_result_path,
benchmark_cols=[
AutoEvalColumn.model.name,
# AutoEvalColumn.license.name,
# AutoEvalColumn.organization.name,
# AutoEvalColumn.knowledge_cutoff.name,
# AutoEvalColumn.score_math_algebra.name,
# AutoEvalColumn.score_math_geometry.name,
# AutoEvalColumn.score_math_probability.name,
AutoEvalColumn.rank_math_algebra.name,
AutoEvalColumn.rank_math_geometry.name,
AutoEvalColumn.rank_math_probability.name,
],
rank_col=['sort_by_rank', 1, 4, 'Math'],
)
)
with gr.TabItem("โญ Sort by Score", elem_id="math_overview_sort_by_score_subtab", id=1, elem_classes="subtab"):
leaderboard = overall_leaderboard(
get_model_leaderboard_df(
model_result_path,
benchmark_cols=[
AutoEvalColumn.model.name,
# AutoEvalColumn.license.name,
# AutoEvalColumn.organization.name,
# AutoEvalColumn.knowledge_cutoff.name,
AutoEvalColumn.score_math_algebra.name,
AutoEvalColumn.score_math_geometry.name,
AutoEvalColumn.score_math_probability.name,
# AutoEvalColumn.rank_math_algebra.name,
# AutoEvalColumn.rank_math_geometry.name,
# AutoEvalColumn.rank_math_probability.name,
],
rank_col=['sort_by_score', 1, 4, 'Math'],
)
)
with gr.TabItem("๐งฎ Algebra", elem_id="algebra_subtab", id=1, elem_classes="subtab"):
leaderboard = overall_leaderboard(
get_model_leaderboard_df(
model_result_path,
benchmark_cols=[
AutoEvalColumn.rank_math_algebra.name,
AutoEvalColumn.model.name,
AutoEvalColumn.score_math_algebra.name,
# AutoEvalColumn.sd_math_algebra.name,
AutoEvalColumn.license.name,
AutoEvalColumn.organization.name,
AutoEvalColumn.knowledge_cutoff.name,
],
rank_col=[AutoEvalColumn.rank_math_algebra.name],
)
)
with gr.TabItem("๐ Geometry", elem_id="geometry_subtab", id=2, elem_classes="subtab"):
leaderboard = overall_leaderboard(
get_model_leaderboard_df(
model_result_path,
benchmark_cols=[
AutoEvalColumn.rank_math_geometry.name,
AutoEvalColumn.model.name,
AutoEvalColumn.score_math_geometry.name,
# AutoEvalColumn.sd_math_geometry.name,
AutoEvalColumn.license.name,
AutoEvalColumn.organization.name,
AutoEvalColumn.knowledge_cutoff.name,
],
rank_col=[AutoEvalColumn.rank_math_geometry.name],
)
)
with gr.TabItem("๐ Probability", elem_id="prob_subtab", id=3, elem_classes="subtab"):
leaderboard = overall_leaderboard(
get_model_leaderboard_df(
model_result_path,
benchmark_cols=[
AutoEvalColumn.rank_math_probability.name,
AutoEvalColumn.model.name,
AutoEvalColumn.score_math_probability.name,
# AutoEvalColumn.sd_math_probability.name,
AutoEvalColumn.license.name,
AutoEvalColumn.organization.name,
AutoEvalColumn.knowledge_cutoff.name,
],
rank_col=[AutoEvalColumn.rank_math_probability.name],
)
)
# with gr.TabItem("Sort_by_rank", elem_id="math_sort_by_rank_subtab", id=4, elem_classes="subtab"):
# leaderboard = overall_leaderboard(
# get_model_leaderboard_df(
# model_result_path,
# benchmark_cols=[
# AutoEvalColumn.model.name,
# AutoEvalColumn.rank_math_algebra.name,
# AutoEvalColumn.rank_math_geometry.name,
# AutoEvalColumn.rank_math_probability.name,
# ],
# rank_col=[],
# )
# )
with gr.TabItem("๐ง Reasoning", elem_id="reasonong-tab-table", id=3):
DESCRIPTION_TEXT = """
Reasoning is a broad domain for evaluating LLMs, but traditional tasks like commonsense reasoning have become less effective in differentiating modern LLMs.
We now present two challenging types of reasoning: logical reasoning and social reasoning, both of which present more meaningful and sophisticated ways to assess LLM performance.
For logical reasoning, we leverage datasets from sources such as
[BIG-Bench Hard (BBH)](https://arxiv.org/abs/2210.09261),
[FOLIO](https://arxiv.org/abs/2209.00840),
[LogiQA2.0](https://github.com/csitfun/LogiQA2.0),
[PrOntoQA](https://arxiv.org/abs/2210.01240),
[ReClor](https://arxiv.org/abs/2002.04326),
These cover a range of tasks including deductive reasoning, object counting and tracking, pattern recognition,
temporal reasoning, first-order logic reaosning, etc.
For social reasoning, we collect datasets from
[MMToM-QA (Text-only)](https://arxiv.org/abs/2401.08743),
[BigToM](https://arxiv.org/abs/2306.15448),
[Adv-CSFB](https://arxiv.org/abs/2305.14763),
[SocialIQA](https://arxiv.org/abs/1904.09728),
[NormBank](https://arxiv.org/abs/2305.17008), covering challenging social reasoning tasks,
such as social commonsense reasoning, social normative reasoning, Theory of Mind (ToM) reasoning, etc.
More fine-grained types of reasoning, such as symbolic, analogical, counterfactual reasoning, are planned to be added in the future.
"""
gr.Markdown(DESCRIPTION_TEXT, elem_classes="markdown-text")
with gr.TabItem("๐ Overview", elem_id="reasoning_overview_subtab", id=0, elem_classes="subtab"):
with gr.TabItem("โญ Sort by Rank", elem_id="reasoning_overview_sort_by_rank_subtab", id=0, elem_classes="subtab"):
leaderboard = overall_leaderboard(
get_model_leaderboard_df(
model_result_path,
benchmark_cols=[
AutoEvalColumn.model.name,
# AutoEvalColumn.license.name,
# AutoEvalColumn.organization.name,
# AutoEvalColumn.knowledge_cutoff.name,
AutoEvalColumn.rank_reason_logical.name,
AutoEvalColumn.rank_reason_social.name,
],
rank_col=['sort_by_rank', 1, 3, 'Reasoning'],
)
)
with gr.TabItem("โญ Sort by Score", elem_id="reasoning_overview_sort_by_score_subtab", id=1, elem_classes="subtab"):
leaderboard = overall_leaderboard(
get_model_leaderboard_df(
model_result_path,
benchmark_cols=[
AutoEvalColumn.model.name,
# AutoEvalColumn.license.name,
# AutoEvalColumn.organization.name,
# AutoEvalColumn.knowledge_cutoff.name,
AutoEvalColumn.score_reason_logical.name,
AutoEvalColumn.score_reason_social.name,
],
rank_col=['sort_by_score', 1, 3, 'Reasoning'],
)
)
with gr.TabItem("๐งฉ Logical", elem_id="logical_subtab", id=1, elem_classes="subtab"):
leaderboard = overall_leaderboard(
get_model_leaderboard_df(
model_result_path,
benchmark_cols=[
AutoEvalColumn.rank_reason_logical.name,
AutoEvalColumn.model.name,
AutoEvalColumn.score_reason_logical.name,
# AutoEvalColumn.sd_reason_logical.name,
AutoEvalColumn.license.name,
AutoEvalColumn.organization.name,
AutoEvalColumn.knowledge_cutoff.name,
],
rank_col=[AutoEvalColumn.rank_reason_logical.name],
)
)
with gr.TabItem("๐ฃ๏ธ Social", elem_id="social_subtab", id=2, elem_classes="subtab"):
leaderboard = overall_leaderboard(
get_model_leaderboard_df(
model_result_path,
benchmark_cols=[
AutoEvalColumn.rank_reason_social.name,
AutoEvalColumn.model.name,
AutoEvalColumn.score_reason_social.name,
# AutoEvalColumn.sd_reason_social.name,
AutoEvalColumn.license.name,
AutoEvalColumn.organization.name,
AutoEvalColumn.knowledge_cutoff.name,
],
rank_col=[AutoEvalColumn.rank_reason_social.name],
)
)
# with gr.TabItem("Sort_by_rank", elem_id="reasoning_sort_by_rank_subtab", id=3, elem_classes="subtab"):
# leaderboard = overall_leaderboard(
# get_model_leaderboard_df(
# model_result_path,
# benchmark_cols=[
# AutoEvalColumn.model.name,
# AutoEvalColumn.rank_reason_logical.name,
# AutoEvalColumn.rank_reason_social.name,
# ],
# rank_col=[],
# )
# )
with gr.TabItem("๐ฌ Science", elem_id="science-table", id=4):
CURRENT_TEXT = """
Scientific tasks are crucial for evaluating LLMs, requiring both domain-specific knowledge and reasoning capabilities.
We are adding several fine-grained scientific domains to the leaderboard. The forthcoming ones are biology, chemistry, and physics.
We have diversely and aggressively collected recent scientific datasets, including but not limited to
[GPQA](https://arxiv.org/abs/2311.12022),
[JEEBench](https://aclanthology.org/2023.emnlp-main.468/),
[MMLU-Pro](https://arxiv.org/abs/2406.01574),
[OlympiadBench](https://arxiv.org/abs/2402.14008),
[SciBench](https://arxiv.org/abs/2307.10635),
[SciEval](https://arxiv.org/abs/2308.13149).
"""
gr.Markdown(CURRENT_TEXT, elem_classes="markdown-text")
with gr.TabItem("๐ Overview", elem_id="science_overview_subtab", id=0, elem_classes="subtab"):
with gr.TabItem("โญ Sort by Rank", elem_id="science_overview_sort_by_rank_subtab", id=0, elem_classes="subtab"):
leaderboard = overall_leaderboard(
get_model_leaderboard_df(
model_result_path,
benchmark_cols=[
AutoEvalColumn.model.name,
# AutoEvalColumn.license.name,
# AutoEvalColumn.organization.name,
# AutoEvalColumn.knowledge_cutoff.name,
AutoEvalColumn.rank_chemistry.name,
AutoEvalColumn.rank_biology.name,
AutoEvalColumn.rank_physics.name,
],
rank_col=['sort_by_rank', 1, 4, 'Science'],
)
)
with gr.TabItem("โญ Sort by Score", elem_id="science_overview_sort_by_score_subtab", id=1, elem_classes="subtab"):
leaderboard = overall_leaderboard(
get_model_leaderboard_df(
model_result_path,
benchmark_cols=[
AutoEvalColumn.model.name,
# AutoEvalColumn.license.name,
# AutoEvalColumn.organization.name,
# AutoEvalColumn.knowledge_cutoff.name,
AutoEvalColumn.score_chemistry.name,
AutoEvalColumn.score_biology.name,
AutoEvalColumn.score_physics.name,
],
rank_col=['sort_by_score', 1, 4, 'Science'], # two numbers are index to select the columns to average and sort
)
)
with gr.TabItem("๐งช Chemistry", elem_id="chemistry_subtab", id=1, elem_classes="subtab"):
leaderboard = overall_leaderboard(
get_model_leaderboard_df(
model_result_path,
benchmark_cols=[
AutoEvalColumn.rank_chemistry.name,
AutoEvalColumn.model.name,
AutoEvalColumn.score_chemistry.name,
# AutoEvalColumn.sd_reason_social.name,
AutoEvalColumn.license.name,
AutoEvalColumn.organization.name,
AutoEvalColumn.knowledge_cutoff.name,
],
rank_col=[AutoEvalColumn.rank_chemistry.name],
)
)
with gr.TabItem("๐งฌ Biology", elem_id="biology_subtab", id=3, elem_classes="subtab"):
# CURRENT_TEXT = """
# # Coming soon!
# """
# gr.Markdown(CURRENT_TEXT, elem_classes="markdown-text")
leaderboard = overall_leaderboard(
get_model_leaderboard_df(
model_result_path,
benchmark_cols=[
AutoEvalColumn.rank_biology.name,
AutoEvalColumn.model.name,
AutoEvalColumn.score_biology.name,
# AutoEvalColumn.sd_reason_social.name,
AutoEvalColumn.license.name,
AutoEvalColumn.organization.name,
AutoEvalColumn.knowledge_cutoff.name,
],
rank_col=[AutoEvalColumn.rank_biology.name],
)
)
with gr.TabItem("โ๏ธ Physics", elem_id="physics_subtab", id=2, elem_classes="subtab"):
# CURRENT_TEXT = """
# # Coming soon!
# """
# gr.Markdown(CURRENT_TEXT, elem_classes="markdown-text")
leaderboard = overall_leaderboard(
get_model_leaderboard_df(
model_result_path,
benchmark_cols=[
AutoEvalColumn.rank_physics.name,
AutoEvalColumn.model.name,
AutoEvalColumn.score_physics.name,
# AutoEvalColumn.sd_reason_social.name,
AutoEvalColumn.license.name,
AutoEvalColumn.organization.name,
AutoEvalColumn.knowledge_cutoff.name,
],
rank_col=[AutoEvalColumn.rank_physics.name],
)
)
with gr.TabItem("</> Coding", elem_id="coding-table", id=5):
CURRENT_TEXT = """
We are working on adding more fine-grained tasks in coding domains to the leaderboard.
The forthcoming ones focus on Python, Java, and C++, with plans to expand to more languages.
We collect a variety of recent coding datasets, including
[HumanEval](https://huggingface.co/datasets/openai/openai_humaneval),
[MBPP](https://huggingface.co/datasets/google-research-datasets/mbpp),
[HumanEvalFix](https://huggingface.co/datasets/bigcode/humanevalpack),
[newly crawled LeetCode data](https://leetcode.com/problemset/),
filtered code-related queries from [Arena-Hard-Auto](https://github.com/lmarena/arena-hard-auto) and more!
Our efforts also include synthesizing new code-related queries to ensure diversity!
"""
gr.Markdown(CURRENT_TEXT, elem_classes="markdown-text")
with gr.TabItem("โ C++", elem_id="cpp_subtab", id=0, elem_classes="subtab"):
leaderboard = overall_leaderboard(
get_model_leaderboard_df(
model_result_path,
benchmark_cols=[
AutoEvalColumn.rank_cpp.name,
AutoEvalColumn.model.name,
AutoEvalColumn.score_cpp.name,
# AutoEvalColumn.sd_cpp.name,
AutoEvalColumn.license.name,
AutoEvalColumn.organization.name,
AutoEvalColumn.knowledge_cutoff.name,
],
rank_col=[AutoEvalColumn.rank_cpp.name],
)
)
with gr.TabItem("๐ Python", elem_id="python_subtab", id=1, elem_classes="subtab"):
CURRENT_TEXT = """
# Coming soon!
"""
gr.Markdown(CURRENT_TEXT, elem_classes="markdown-text")
with gr.TabItem("โ Java", elem_id="java_subtab", id=2, elem_classes="subtab"):
CURRENT_TEXT = """
# Coming soon!
"""
gr.Markdown(CURRENT_TEXT, elem_classes="markdown-text")
with gr.TabItem("๐ฏ Mixed", elem_id="llm-benchmark-tab-table", id=1):
DESCRIPTION_TEXT = """
Overall dimension measures the comprehensive performance of LLMs across diverse tasks.
We start with diverse questions from the widely-used [MT-Bench](https://arxiv.org/abs/2306.05685),
coving a wide range of domains, including writing, roleplay, extraction, reasoning, math, coding, knowledge I (STEM), and knowledge II (humanities/social science).
"""
gr.Markdown(DESCRIPTION_TEXT, elem_classes="markdown-text")
with gr.TabItem("MT-Bench", elem_id="mt-bench_subtab", id=0, elem_classes="subtab"):
leaderboard = overall_leaderboard(
get_model_leaderboard_df(
model_result_path,
benchmark_cols=[
AutoEvalColumn.rank_overall.name,
AutoEvalColumn.model.name,
AutoEvalColumn.score_overall.name,
# AutoEvalColumn.sd_overall.name,
AutoEvalColumn.license.name,
AutoEvalColumn.organization.name,
AutoEvalColumn.knowledge_cutoff.name,
],
rank_col=[AutoEvalColumn.rank_overall.name],
))
with gr.TabItem("๐ About", elem_id="llm-benchmark-tab-table", id=6):
ABOUT_TEXT = """
# About Us
[Decentralized Arena](https://de-arena.maitrix.org/) is an open-source project that automates and scales the evaluation of large language models (LLMs) across various fine-grained dimensions,
developed by reseachers from UCSD, CMU, MBZUAI, [Maitrix.org](https://maitrix.org/) and [LLM360](https://www.llm360.ai/).
Stay tuned for more updates and new features!
## Team members
Yanbin Yin, [Zhen Wang](https://zhenwang9102.github.io/), [Kun Zhou](https://lancelot39.github.io/), Xiangdong Zhang,
[Shibo Hao](https://ber666.github.io/), [Yi Gu](https://www.yigu.page/), [Jieyuan Liu](https://www.linkedin.com/in/jieyuan-liu/), [Somanshu Singla](https://www.linkedin.com/in/somanshu-singla-105636214/), [Tianyang Liu](https://leolty.github.io/),
[Eric P. Xing](https://www.cs.cmu.edu/~epxing/), [Zhengzhong Liu](https://hunterhector.github.io/), [Haojian Jin](https://www.haojianj.in/),
[Zhiting Hu](https://zhiting.ucsd.edu/)
## Contact Us
- Follow us on X, [Maitrix.org](https://twitter.com/MaitrixOrg) and [LLM360](https://twitter.com/llm360)
- Email us at [Zhen Wang](mailto:[email protected]), [Kun Zhou](mailto:[email protected]) and [Zhiting Hu](mailto:[email protected])
"""
gr.Markdown(ABOUT_TEXT, elem_classes="markdown-text")
'''
with gr.TabItem("๐ Submit here! ", elem_id="llm-benchmark-tab-table", id=3):
with gr.Column():
with gr.Row():
gr.Markdown(EVALUATION_QUEUE_TEXT, elem_classes="markdown-text")
with gr.Column():
with gr.Accordion(
f"โ
Finished Evaluations ({len(finished_eval_queue_df)})",
open=False,
):
with gr.Row():
finished_eval_table = gr.components.Dataframe(
value=finished_eval_queue_df,
headers=EVAL_COLS,
datatype=EVAL_TYPES,
row_count=5,
)
with gr.Accordion(
f"๐ Running Evaluation Queue ({len(running_eval_queue_df)})",
open=False,
):
with gr.Row():
running_eval_table = gr.components.Dataframe(
value=running_eval_queue_df,
headers=EVAL_COLS,
datatype=EVAL_TYPES,
row_count=5,
)
with gr.Accordion(
f"โณ Pending Evaluation Queue ({len(pending_eval_queue_df)})",
open=False,
):
with gr.Row():
pending_eval_table = gr.components.Dataframe(
value=pending_eval_queue_df,
headers=EVAL_COLS,
datatype=EVAL_TYPES,
row_count=5,
)
with gr.Row():
gr.Markdown("# โ๏ธโจ Submit your model here!", elem_classes="markdown-text")
with gr.Row():
with gr.Column():
model_name_textbox = gr.Textbox(label="Model name")
revision_name_textbox = gr.Textbox(label="Revision commit", placeholder="main")
model_type = gr.Dropdown(
choices=[t.to_str(" : ") for t in ModelType if t != ModelType.Unknown],
label="Model type",
multiselect=False,
value=None,
interactive=True,
)
with gr.Column():
precision = gr.Dropdown(
choices=[i.value.name for i in Precision if i != Precision.Unknown],
label="Precision",
multiselect=False,
value="float16",
interactive=True,
)
weight_type = gr.Dropdown(
choices=[i.value.name for i in WeightType],
label="Weights type",
multiselect=False,
value="Original",
interactive=True,
)
base_model_name_textbox = gr.Textbox(label="Base model (for delta or adapter weights)")
submit_button = gr.Button("Submit Eval")
submission_result = gr.Markdown()
submit_button.click(
add_new_eval,
[
model_name_textbox,
base_model_name_textbox,
revision_name_textbox,
precision,
weight_type,
model_type,
],
submission_result,
)
'''
with gr.Row():
with gr.Accordion("๐ Citation", open=False):
citation_button = gr.Textbox(
value=CITATION_BUTTON_TEXT,
label=CITATION_BUTTON_LABEL,
lines=20,
elem_id="citation-button",
show_copy_button=True,
)
scheduler = BackgroundScheduler()
scheduler.add_job(restart_space, "interval", seconds=1800)
scheduler.start()
demo.queue(default_concurrency_limit=40).launch() |