LINC-BIT's picture
Upload 1912 files
b84549f verified
import os
#bert_path should be the path of the roberta-base dir
os.environ['bert_path'] = '/data/zql/concept-drift-in-edge-projects/UniversalElasticNet/new_impl/nlp/roberta/sentiment-classification/roberta-base'
os.environ["TOKENIZERS_PARALLELISM"] = "false"
import torch
import torch.nn as nn
from methods.elasticdnn.api.algs.fm_lora import ElasticDNN_FMLoRAAlg
from methods.elasticdnn.api.algs.md_pretraining_wo_fbs import ElasticDNN_MDPretrainingWoFBSAlg
from methods.elasticdnn.model.base import ElasticDNNUtil
from methods.elasticdnn.pipeline.offline.fm_lora.base import FMLoRA_Util
from methods.elasticdnn.pipeline.offline.fm_to_md.base import FM_to_MD_Util
from methods.elasticdnn.pipeline.offline.fm_to_md.vit import FM_to_MD_ViT_Util
from methods.elasticdnn.model.vit import ElasticViTUtil
from methods.elasticdnn.api.algs.md_pretraining_index_v2_train_index_and_md import ElasticDNN_MDPretrainingIndexAlg
from utils.dl.common.model import LayerActivation2, get_module, get_parameter
from utils.common.exp import save_models_dict_for_init, get_res_save_dir
from data import build_scenario
import torch.nn.functional as F
from utils.dl.common.loss import CrossEntropyLossSoft
from new_impl.cv.feat_align.main import OnlineFeatAlignModel, FeatAlignAlg
import tqdm
from new_impl.cv.feat_align.mmd import mmd_rbf
from new_impl.cv.utils.baseline_da import baseline_da
from methods.elasticdnn.api.online_model_v2 import ElasticDNN_OnlineModel
from utils.common.log import logger
import json
from roberta import FMLoRA_Roberta_Util, RobertaForSenCls, FM_to_MD_Roberta_Util, ElasticRobertaUtil
from copy import deepcopy
torch.cuda.set_device(1)
# from methods.shot.shot import OnlineShotModel
from experiments.utils.elasticfm_cl import init_online_model, elasticfm_cl
# torch.multiprocessing.set_sharing_strategy('file_system')
device = 'cuda:1'
app_name = 'secls'
scenario = build_scenario(
source_datasets_name=['HL5Domains-ApexAD2600Progressive', 'HL5Domains-CanonG3', 'HL5Domains-CreativeLabsNomadJukeboxZenXtra40GB'],
target_datasets_order=['HL5Domains-Nokia6610', 'HL5Domains-NikonCoolpix4300'] * 10, # TODO
da_mode='close_set',
data_dirs={
**{k: f'/data/zql/datasets/nlp_asc_19_domains/dat/absa/Bing5Domains/asc/{k.split("-")[1]}'
for k in ['HL5Domains-ApexAD2600Progressive', 'HL5Domains-CanonG3', 'HL5Domains-CreativeLabsNomadJukeboxZenXtra40GB',
'HL5Domains-NikonCoolpix4300', 'HL5Domains-Nokia6610']}
},
)
class SeClsOnlineFeatAlignModel(OnlineFeatAlignModel):
def get_trained_params(self): # TODO: elastic fm only train a part of params
#qkv_and_norm_params = [p for n, p in self.models_dict['main'].named_parameters() if 'attention.attention.projection_query' in n or 'attention.attention.projection_key' in n or 'attention.attention.projection_value' in n or 'intermediate.dense' in n or 'output.dense' in n]
qkv_and_norm_params = [p for n, p in self.models_dict['main'].named_parameters()]
return qkv_and_norm_params
def get_feature_hook(self) -> LayerActivation2:
return LayerActivation2(get_module(self.models_dict['main'], 'classifier'))
def forward_to_get_task_loss(self, x, y):
self.to_train_mode()
return F.cross_entropy(self.infer(x), y)
def get_mmd_loss(self, f1, f2):
common_shape = min(f1.shape[0], f2.shape[0])
f1 = f1.view(f1.shape[0], -1)
f2 = f2.view(f2.shape[0], -1)
f1 = f1[:common_shape,:]
f2 = f2[:common_shape,:]
return mmd_rbf(f1, f2)
def infer(self, x, *args, **kwargs):
return self.models_dict['main'](**x)
def get_accuracy(self, test_loader, *args, **kwargs):
_d = test_loader.dataset
from data import build_dataloader, split_dataset
if _d.__class__.__name__ == '_SplitDataset' and _d.underlying_dataset.__class__.__name__ == 'MergedDataset': # necessary for CL
print('\neval on merged datasets')
merged_full_dataset = _d.underlying_dataset.datasets
ratio = len(_d.keys) / len(_d.underlying_dataset)
if int(len(_d) * ratio) == 0:
ratio = 1.
# print(ratio)
# bs =
# test_loaders = [build_dataloader(split_dataset(d, min(max(test_loader.batch_size, int(len(d) * ratio)), len(d)))[0], # TODO: this might be overlapped with train dataset
# min(test_loader.batch_size, int(len(d) * ratio)),
# test_loader.num_workers, False, None) for d in merged_full_dataset]
test_loaders = []
for d in merged_full_dataset:
n = int(len(d) * ratio)
if n == 0:
n = len(d)
sub_dataset = split_dataset(d, min(max(test_loader.batch_size, n), len(d)))[0]
loader = build_dataloader(sub_dataset, min(test_loader.batch_size, n), test_loader.num_workers, False, None)
test_loaders += [loader]
accs = [self.get_accuracy(loader) for loader in test_loaders]
print(accs)
return sum(accs) / len(accs)
acc = 0
sample_num = 0
self.to_eval_mode()
with torch.no_grad():
pbar = tqdm.tqdm(enumerate(test_loader), total=len(test_loader), dynamic_ncols=True, leave=False)
for batch_index, (x, y) in pbar:
for k, v in x.items():
if isinstance(v, torch.Tensor):
x[k] = v.to(self.device)
y = y.to(self.device)
output = self.infer(x)
pred = F.softmax(output, dim=1).argmax(dim=1)
correct = torch.eq(pred, y).sum().item()
acc += correct
sample_num += len(y)
# if batch_index == 0:
# print(pred, y)
pbar.set_description(f'cur_batch_total: {len(y)}, cur_batch_correct: {correct}, '
f'cur_batch_acc: {(correct / len(y)):.4f}')
acc /= sample_num
return acc
da_alg = FeatAlignAlg
from utils.dl.common.lr_scheduler import get_linear_schedule_with_warmup
#from new_impl.cv.model import ClsOnlineFeatAlignModel
da_model = SeClsOnlineFeatAlignModel(
app_name,
'new_impl/nlp/roberta/sentiment-classification/results/cls_md_wo_fbs.py/20240113/999996-140353/models/md_best.pt',
device
)
da_alg_hyp = {
'HL5Domains-Nokia6610': {
'train_batch_size': 32,
'val_batch_size': 256,
'num_workers': 8,
'optimizer': 'AdamW',
'optimizer_args': {'lr': 2e-7, 'betas': [0.9, 0.999], 'weight_decay': 0.01},
'scheduler': '',
'scheduler_args': {},
'num_iters': 100,
'val_freq': 20,
'feat_align_loss_weight': 1.0,
},
'HL5Domains-NikonCoolpix4300': {
'train_batch_size': 32,
'val_batch_size': 128,
'num_workers': 8,
'optimizer': 'AdamW',
'optimizer_args': {'lr': 2e-7, 'betas': [0.9, 0.999], 'weight_decay': 0.01},
'scheduler': '',
'scheduler_args': {},
'num_iters': 100,
'val_freq': 20,
'feat_align_loss_weight': 1.0,
},
}
baseline_da(
app_name,
scenario,
da_alg,
da_alg_hyp,
da_model,
device,
__file__,
"results"
)