|
import os |
|
|
|
os.environ['bert_path'] = '/data/zql/concept-drift-in-edge-projects/UniversalElasticNet/new_impl/nlp/roberta/sentiment-classification/roberta-base' |
|
os.environ["TOKENIZERS_PARALLELISM"] = "false" |
|
import torch |
|
import torch.nn as nn |
|
from methods.elasticdnn.api.algs.fm_lora import ElasticDNN_FMLoRAAlg |
|
from methods.elasticdnn.api.algs.md_pretraining_wo_fbs import ElasticDNN_MDPretrainingWoFBSAlg |
|
from methods.elasticdnn.model.base import ElasticDNNUtil |
|
from methods.elasticdnn.pipeline.offline.fm_lora.base import FMLoRA_Util |
|
from methods.elasticdnn.pipeline.offline.fm_to_md.base import FM_to_MD_Util |
|
from methods.elasticdnn.pipeline.offline.fm_to_md.vit import FM_to_MD_ViT_Util |
|
from methods.elasticdnn.model.vit import ElasticViTUtil |
|
from methods.elasticdnn.api.algs.md_pretraining_index_v2_train_index_and_md import ElasticDNN_MDPretrainingIndexAlg |
|
from utils.dl.common.model import LayerActivation2, get_module, get_parameter |
|
from utils.common.exp import save_models_dict_for_init, get_res_save_dir |
|
from data import build_scenario |
|
import torch.nn.functional as F |
|
from utils.dl.common.loss import CrossEntropyLossSoft |
|
from new_impl.cv.feat_align.main import OnlineFeatAlignModel, FeatAlignAlg |
|
import tqdm |
|
from new_impl.cv.feat_align.mmd import mmd_rbf |
|
from new_impl.cv.utils.baseline_da import baseline_da |
|
from methods.elasticdnn.api.online_model_v2 import ElasticDNN_OnlineModel |
|
from utils.common.log import logger |
|
import json |
|
from roberta import FMLoRA_Roberta_Util, RobertaForSenCls, FM_to_MD_Roberta_Util, ElasticRobertaUtil |
|
from copy import deepcopy |
|
|
|
torch.cuda.set_device(1) |
|
|
|
|
|
from experiments.utils.elasticfm_cl import init_online_model, elasticfm_cl |
|
|
|
device = 'cuda:1' |
|
app_name = 'secls' |
|
|
|
scenario = build_scenario( |
|
source_datasets_name=['HL5Domains-ApexAD2600Progressive', 'HL5Domains-CanonG3', 'HL5Domains-CreativeLabsNomadJukeboxZenXtra40GB'], |
|
target_datasets_order=['HL5Domains-Nokia6610', 'HL5Domains-NikonCoolpix4300'] * 10, |
|
da_mode='close_set', |
|
data_dirs={ |
|
**{k: f'/data/zql/datasets/nlp_asc_19_domains/dat/absa/Bing5Domains/asc/{k.split("-")[1]}' |
|
for k in ['HL5Domains-ApexAD2600Progressive', 'HL5Domains-CanonG3', 'HL5Domains-CreativeLabsNomadJukeboxZenXtra40GB', |
|
'HL5Domains-NikonCoolpix4300', 'HL5Domains-Nokia6610']} |
|
}, |
|
) |
|
|
|
class SeClsOnlineFeatAlignModel(OnlineFeatAlignModel): |
|
def get_trained_params(self): |
|
|
|
qkv_and_norm_params = [p for n, p in self.models_dict['main'].named_parameters()] |
|
return qkv_and_norm_params |
|
|
|
def get_feature_hook(self) -> LayerActivation2: |
|
return LayerActivation2(get_module(self.models_dict['main'], 'classifier')) |
|
|
|
def forward_to_get_task_loss(self, x, y): |
|
self.to_train_mode() |
|
return F.cross_entropy(self.infer(x), y) |
|
|
|
def get_mmd_loss(self, f1, f2): |
|
common_shape = min(f1.shape[0], f2.shape[0]) |
|
f1 = f1.view(f1.shape[0], -1) |
|
f2 = f2.view(f2.shape[0], -1) |
|
f1 = f1[:common_shape,:] |
|
f2 = f2[:common_shape,:] |
|
return mmd_rbf(f1, f2) |
|
|
|
def infer(self, x, *args, **kwargs): |
|
return self.models_dict['main'](**x) |
|
|
|
def get_accuracy(self, test_loader, *args, **kwargs): |
|
_d = test_loader.dataset |
|
from data import build_dataloader, split_dataset |
|
if _d.__class__.__name__ == '_SplitDataset' and _d.underlying_dataset.__class__.__name__ == 'MergedDataset': |
|
print('\neval on merged datasets') |
|
|
|
merged_full_dataset = _d.underlying_dataset.datasets |
|
ratio = len(_d.keys) / len(_d.underlying_dataset) |
|
|
|
if int(len(_d) * ratio) == 0: |
|
ratio = 1. |
|
|
|
|
|
|
|
|
|
|
|
|
|
test_loaders = [] |
|
for d in merged_full_dataset: |
|
n = int(len(d) * ratio) |
|
if n == 0: |
|
n = len(d) |
|
sub_dataset = split_dataset(d, min(max(test_loader.batch_size, n), len(d)))[0] |
|
loader = build_dataloader(sub_dataset, min(test_loader.batch_size, n), test_loader.num_workers, False, None) |
|
test_loaders += [loader] |
|
|
|
accs = [self.get_accuracy(loader) for loader in test_loaders] |
|
print(accs) |
|
return sum(accs) / len(accs) |
|
|
|
acc = 0 |
|
sample_num = 0 |
|
|
|
self.to_eval_mode() |
|
|
|
with torch.no_grad(): |
|
pbar = tqdm.tqdm(enumerate(test_loader), total=len(test_loader), dynamic_ncols=True, leave=False) |
|
for batch_index, (x, y) in pbar: |
|
for k, v in x.items(): |
|
if isinstance(v, torch.Tensor): |
|
x[k] = v.to(self.device) |
|
y = y.to(self.device) |
|
output = self.infer(x) |
|
pred = F.softmax(output, dim=1).argmax(dim=1) |
|
correct = torch.eq(pred, y).sum().item() |
|
acc += correct |
|
sample_num += len(y) |
|
|
|
|
|
|
|
|
|
pbar.set_description(f'cur_batch_total: {len(y)}, cur_batch_correct: {correct}, ' |
|
f'cur_batch_acc: {(correct / len(y)):.4f}') |
|
|
|
acc /= sample_num |
|
return acc |
|
|
|
da_alg = FeatAlignAlg |
|
from utils.dl.common.lr_scheduler import get_linear_schedule_with_warmup |
|
|
|
da_model = SeClsOnlineFeatAlignModel( |
|
app_name, |
|
'new_impl/nlp/roberta/sentiment-classification/results/cls_md_wo_fbs.py/20240113/999996-140353/models/md_best.pt', |
|
device |
|
) |
|
|
|
da_alg_hyp = { |
|
'HL5Domains-Nokia6610': { |
|
'train_batch_size': 32, |
|
'val_batch_size': 256, |
|
'num_workers': 8, |
|
'optimizer': 'AdamW', |
|
'optimizer_args': {'lr': 2e-7, 'betas': [0.9, 0.999], 'weight_decay': 0.01}, |
|
'scheduler': '', |
|
'scheduler_args': {}, |
|
'num_iters': 100, |
|
'val_freq': 20, |
|
'feat_align_loss_weight': 1.0, |
|
}, |
|
'HL5Domains-NikonCoolpix4300': { |
|
'train_batch_size': 32, |
|
'val_batch_size': 128, |
|
'num_workers': 8, |
|
'optimizer': 'AdamW', |
|
'optimizer_args': {'lr': 2e-7, 'betas': [0.9, 0.999], 'weight_decay': 0.01}, |
|
'scheduler': '', |
|
'scheduler_args': {}, |
|
'num_iters': 100, |
|
'val_freq': 20, |
|
'feat_align_loss_weight': 1.0, |
|
}, |
|
} |
|
|
|
|
|
baseline_da( |
|
app_name, |
|
scenario, |
|
da_alg, |
|
da_alg_hyp, |
|
da_model, |
|
device, |
|
__file__, |
|
"results" |
|
) |
|
|