|
from transformers import AutoModel, AutoConfig |
|
from utils.dl.common.model import set_module |
|
from torch import nn |
|
import torch |
|
from utils.common.log import logger |
|
from copy import deepcopy |
|
from einops.layers.torch import Rearrange |
|
|
|
from methods.elasticdnn.pipeline.offline.fm_to_md.base import FM_to_MD_Util |
|
from methods.elasticdnn.pipeline.offline.fm_lora.base import FMLoRA_Util, LoRA |
|
from utils.common.log import logger |
|
from utils.dl.common.model import set_module, get_module, get_super_module |
|
from utils.dl.common.model import get_model_device, get_model_latency, get_model_size |
|
from utils.common.log import logger |
|
|
|
from transformers.models.mobilebert.modeling_mobilebert import MobileBertSelfAttention |
|
from methods.elasticdnn.model.base import Abs, KTakesAll, ElasticDNNUtil, Layer_WrappedWithFBS |
|
from typing import Optional, Tuple |
|
import math |
|
import os |
|
|
|
bert_model_tag = f'{os.path.dirname(__file__)}/mobilebert-uncased' |
|
|
|
class BertForSenCls(nn.Module): |
|
def __init__(self, num_classes): |
|
super(BertForSenCls, self).__init__() |
|
|
|
logger.info(f'init bert for sen cls (using {bert_model_tag})') |
|
self.bert = AutoModel.from_pretrained(bert_model_tag) |
|
self.classifier = nn.Linear(512, num_classes) |
|
|
|
def forward(self, **x): |
|
x['return_dict'] = False |
|
pool_output = self.bert(**x)[-1] |
|
out = self.classifier(pool_output) |
|
|
|
return out |
|
|
|
class BertSelfAttentionPrunable(MobileBertSelfAttention): |
|
def __init__(self): |
|
config = AutoConfig.from_pretrained(bert_model_tag) |
|
super(BertSelfAttentionPrunable, self).__init__(config) |
|
|
|
def transpose_for_scores(self, x): |
|
new_x_shape = x.size()[:-1] + (self.num_attention_heads, -1) |
|
x = x.view(new_x_shape) |
|
return x.permute(0, 2, 1, 3) |
|
|
|
def forward( |
|
self, |
|
query_tensor, |
|
key_tensor, |
|
value_tensor, |
|
attention_mask=None, |
|
head_mask=None, |
|
output_attentions=None, |
|
): |
|
mixed_query_layer = self.query(query_tensor) |
|
mixed_key_layer = self.key(key_tensor) |
|
mixed_value_layer = self.value(value_tensor) |
|
|
|
query_layer = self.transpose_for_scores(mixed_query_layer) |
|
key_layer = self.transpose_for_scores(mixed_key_layer) |
|
value_layer = self.transpose_for_scores(mixed_value_layer) |
|
|
|
|
|
attention_scores = torch.matmul(query_layer, key_layer.transpose(-1, -2)) |
|
attention_scores = attention_scores / math.sqrt(self.attention_head_size) |
|
if attention_mask is not None: |
|
|
|
attention_scores = attention_scores + attention_mask |
|
|
|
attention_probs = nn.Softmax(dim=-1)(attention_scores) |
|
|
|
|
|
attention_probs = self.dropout(attention_probs) |
|
|
|
if head_mask is not None: |
|
attention_probs = attention_probs * head_mask |
|
context_layer = torch.matmul(attention_probs, value_layer) |
|
context_layer = context_layer.permute(0, 2, 1, 3).contiguous() |
|
new_context_layer_shape = context_layer.size()[:-2] + (-1,) |
|
context_layer = context_layer.view(*new_context_layer_shape) |
|
outputs = (context_layer, attention_probs) if output_attentions else (context_layer,) |
|
return outputs |
|
|
|
@staticmethod |
|
def init_from_exist_self_attn(attn: MobileBertSelfAttention): |
|
|
|
|
|
res = BertSelfAttentionPrunable() |
|
|
|
for attr in dir(attn): |
|
|
|
|
|
|
|
|
|
|
|
if isinstance(getattr(attn, attr), nn.Module): |
|
try: |
|
|
|
setattr(res, attr, getattr(attn, attr)) |
|
|
|
except Exception as e: |
|
print(attr, str(e)) |
|
|
|
|
|
|
|
return res |
|
|
|
class FM_to_MD_Bert_Util(FM_to_MD_Util): |
|
def init_md_from_fm_by_reducing_width(self, fm: nn.Module, reducing_width_ratio: int) -> nn.Module: |
|
fm_vit = deepcopy(fm) |
|
|
|
for block in fm_vit.bert.encoder.layer: |
|
set_module(block, 'attention.self', BertSelfAttentionPrunable.init_from_exist_self_attn(block.attention.self)) |
|
|
|
def _f(n): |
|
return int(n // reducing_width_ratio) |
|
|
|
|
|
|
|
|
|
def l1_max_indexes(p: torch.Tensor, dim=0): |
|
assert dim in [0, 1] |
|
assert p.dim() in [1, 2, 4] |
|
|
|
if dim == 1: |
|
p = p.T |
|
|
|
p_norm = p.abs().contiguous().view(p.size(0), -1).sum(dim=1) |
|
n = p.size(0) |
|
return p_norm.argsort(descending=True)[0: int(n // reducing_width_ratio)].sort()[0] |
|
|
|
for block_i, block in enumerate(fm_vit.bert.encoder.layer): |
|
for k in ['query', 'key', 'value']: |
|
qkv = get_module(block, f'attention.self.{k}') |
|
|
|
new_qkv = nn.Linear(qkv.in_features, _f(qkv.out_features), |
|
qkv.bias is not None, qkv.weight.device) |
|
indexes = l1_max_indexes(qkv.weight.data, 0) |
|
|
|
new_qkv.weight.data.copy_(qkv.weight.data[indexes]) |
|
if qkv.bias is not None: |
|
new_qkv.bias.data.copy_(qkv.bias.data[indexes]) |
|
set_module(block, f'attention.self.{k}', new_qkv) |
|
|
|
proj = get_module(block, f'attention.output.dense') |
|
new_proj = nn.Linear(_f(proj.in_features), proj.out_features, |
|
proj.bias is not None, proj.weight.device) |
|
new_proj.weight.data.copy_(proj.weight.data[:, l1_max_indexes(proj.weight.data, 1)]) |
|
if proj.bias is not None: |
|
new_proj.bias.data.copy_(proj.bias.data) |
|
set_module(block, f'attention.output.dense', new_proj) |
|
|
|
fc1 = get_module(block, f'intermediate.dense') |
|
new_fc1 = nn.Linear(fc1.in_features, _f(fc1.out_features), |
|
fc1.bias is not None, fc1.weight.device) |
|
indexes = l1_max_indexes(fc1.weight.data, 0) |
|
new_fc1.weight.data.copy_(fc1.weight.data[indexes]) |
|
if fc1.bias is not None: |
|
new_fc1.bias.data.copy_(fc1.bias.data[indexes]) |
|
set_module(block, f'intermediate.dense', new_fc1) |
|
|
|
fc2 = get_module(block, f'output.dense') |
|
new_fc2 = nn.Linear(_f(fc2.in_features), fc2.out_features, |
|
fc2.bias is not None, fc2.weight.device) |
|
new_fc2.weight.data.copy_(fc2.weight.data[:, l1_max_indexes(fc2.weight.data, 1)]) |
|
if fc2.bias is not None: |
|
new_fc2.bias.data.copy_(fc2.bias.data) |
|
set_module(block, f'output.dense', new_fc2) |
|
|
|
return fm_vit |
|
|
|
def init_md_from_fm_by_reducing_width_with_perf_test(self, fm: nn.Module, reducing_width_ratio: int, |
|
samples: torch.Tensor) -> nn.Module: |
|
fm_size = get_model_size(fm, True) |
|
fm_latency = self._get_model_latency(fm, samples, 20, |
|
get_model_device(fm), 20, False) |
|
|
|
master_dnn = self.init_md_from_fm_by_reducing_width(fm, reducing_width_ratio) |
|
master_dnn_size = get_model_size(master_dnn, True) |
|
logger.debug(f'inited master DNN: {master_dnn}') |
|
master_dnn_latency = self._get_model_latency(master_dnn, samples, 20, |
|
get_model_device(master_dnn), 20, False) |
|
|
|
logger.info(f'init master DNN (w/o FBS yet) by reducing foundation model\'s width (by {reducing_width_ratio:d}x)') |
|
logger.info(f'foundation model ({fm_size:.3f}MB, {fm_latency:.4f}s/sample) -> ' |
|
f'master DNN ({master_dnn_size:.3f}MB, {master_dnn_latency:.4f}s/sample)\n' |
|
f'(model size: ↓ {(fm_size / master_dnn_size):.2f}x, ' |
|
f'latency: ↓ {(fm_latency / master_dnn_latency):.2f}x)') |
|
|
|
return master_dnn |
|
|
|
def _get_model_latency(self, model: torch.nn.Module, model_input_size, sample_num: int, |
|
device: str, warmup_sample_num: int, return_detail=False): |
|
import time |
|
|
|
if isinstance(model_input_size, tuple): |
|
dummy_input = torch.rand(model_input_size).to(device) |
|
else: |
|
dummy_input = model_input_size |
|
|
|
model = model.to(device) |
|
model.eval() |
|
|
|
|
|
with torch.no_grad(): |
|
for _ in range(warmup_sample_num): |
|
model(**dummy_input) |
|
|
|
infer_time_list = [] |
|
|
|
if device == 'cuda' or 'cuda' in str(device): |
|
with torch.no_grad(): |
|
for _ in range(sample_num): |
|
s, e = torch.cuda.Event(enable_timing=True), torch.cuda.Event(enable_timing=True) |
|
s.record() |
|
model(**dummy_input) |
|
e.record() |
|
torch.cuda.synchronize() |
|
cur_model_infer_time = s.elapsed_time(e) / 1000. |
|
infer_time_list += [cur_model_infer_time] |
|
|
|
else: |
|
with torch.no_grad(): |
|
for _ in range(sample_num): |
|
start = time.time() |
|
model(**dummy_input) |
|
cur_model_infer_time = time.time() - start |
|
infer_time_list += [cur_model_infer_time] |
|
|
|
avg_infer_time = sum(infer_time_list) / sample_num |
|
|
|
if return_detail: |
|
return avg_infer_time, infer_time_list |
|
return avg_infer_time |
|
|
|
class SqueezeLast(nn.Module): |
|
def __init__(self): |
|
super(SqueezeLast, self).__init__() |
|
|
|
def forward(self, x): |
|
return x.squeeze(-1) |
|
|
|
class Linear_WrappedWithFBS(Layer_WrappedWithFBS): |
|
def __init__(self, linear: nn.Linear, r): |
|
super(Linear_WrappedWithFBS, self).__init__() |
|
|
|
self.linear = linear |
|
|
|
|
|
|
|
self.fbs = nn.Sequential( |
|
Rearrange('b n d -> b d n'), |
|
Abs(), |
|
nn.AdaptiveAvgPool1d(1), |
|
SqueezeLast(), |
|
nn.Linear(linear.in_features, linear.out_features // r), |
|
nn.ReLU(), |
|
nn.Linear(linear.out_features // r, linear.out_features), |
|
nn.ReLU() |
|
) |
|
self.ln = nn.LayerNorm(linear.out_features) |
|
nn.init.constant_(self.fbs[6].bias, 1.) |
|
nn.init.kaiming_normal_(self.fbs[6].weight) |
|
|
|
|
|
def forward(self, x): |
|
if self.use_cached_channel_attention and self.cached_channel_attention is not None: |
|
channel_attention = self.cached_channel_attention |
|
else: |
|
self.cached_raw_channel_attention = self.fbs(x) |
|
self.cached_channel_attention = self.k_takes_all(self.cached_raw_channel_attention) |
|
|
|
channel_attention = self.cached_channel_attention |
|
|
|
raw_res = self.linear(x) |
|
res = channel_attention.unsqueeze(1) * raw_res |
|
res = self.ln(res) |
|
return res |
|
|
|
class ToQKV_WrappedWithLoRA(nn.Module): |
|
def __init__(self, fc: nn.Linear, ab_r: int): |
|
super(ToQKV_WrappedWithLoRA, self).__init__() |
|
|
|
self.fc = fc |
|
self.ab = self.create_ab_as_linear(fc.weight.data, ab_r) |
|
|
|
def create_ab_as_linear(self, fc_weight: torch.Tensor, ab_r: int): |
|
res = nn.Sequential( |
|
LoRA(fc_weight.size(1), fc_weight.size(0) // ab_r, bias=False), |
|
LoRA(fc_weight.size(0) // ab_r, fc_weight.size(0), bias=False) |
|
).to(fc_weight.device) |
|
nn.init.kaiming_uniform_(res[0].weight, a=5 ** 0.5) |
|
nn.init.zeros_(res[1].weight) |
|
return res |
|
|
|
def forward(self, x): |
|
x1 = self.fc(x) |
|
x2 = self.ab(x) |
|
return x1 + x2 |
|
|
|
|
|
class FMLoRA_Bert_Util(FMLoRA_Util): |
|
|
|
@torch.no_grad() |
|
def add_lora_ab_to_fm(self, fm: nn.Module, ab_r: int, samples: dict): |
|
fm.eval() |
|
|
|
o1 = fm(**samples) |
|
|
|
for name, module in fm.named_modules(): |
|
if name.endswith(('query', 'key', 'value')): |
|
set_module(fm, name, ToQKV_WrappedWithLoRA(module, ab_r)) |
|
|
|
o2 = fm(**samples) |
|
|
|
if isinstance(o1, tuple): |
|
o1 = o1[-1] |
|
o2 = o2[-1] |
|
output_diff = ((o1 - o2) ** 2).sum() |
|
assert output_diff < 1e-5 |
|
|
|
return fm |
|
|
|
@torch.no_grad() |
|
def absorb_lora_and_recover_net_structure(self, fm: nn.Module, samples: dict): |
|
fm.eval() |
|
|
|
o1 = fm(**samples) |
|
|
|
for name, module in fm.named_modules(): |
|
if not isinstance(module, ToQKV_WrappedWithLoRA): |
|
continue |
|
|
|
fc = module.fc |
|
ab = module.ab |
|
|
|
fc.weight.add_(ab[1].weight @ ab[0].weight) |
|
|
|
set_module(fm, name, fc) |
|
|
|
|
|
o2 = fm(**samples) |
|
|
|
if isinstance(o1, tuple): |
|
o1 = o1[-1] |
|
o2 = o2[-1] |
|
output_diff = ((o1 - o2) ** 2).sum() |
|
assert output_diff < 1e-6, output_diff |
|
|
|
return fm |
|
|
|
class StaticFBS(nn.Module): |
|
def __init__(self, static_channel_attention): |
|
super(StaticFBS, self).__init__() |
|
assert static_channel_attention.dim() == 2 and static_channel_attention.size(0) == 1 |
|
self.static_channel_attention = nn.Parameter(static_channel_attention, requires_grad=False) |
|
|
|
def forward(self, x): |
|
|
|
return x * self.static_channel_attention.unsqueeze(1) |
|
|
|
class ElasticBertUtil(ElasticDNNUtil): |
|
def convert_raw_dnn_to_master_dnn(self, raw_dnn: nn.Module, r: float, ignore_layers=[]): |
|
assert len(ignore_layers) == 0, 'not supported yet' |
|
|
|
raw_vit = deepcopy(raw_dnn) |
|
|
|
|
|
|
|
for name, module in raw_vit.named_modules(): |
|
|
|
|
|
if name.endswith('intermediate'): |
|
set_module(module, 'dense', Linear_WrappedWithFBS(module.dense, r)) |
|
|
|
return raw_vit |
|
|
|
def set_master_dnn_sparsity(self, master_dnn: nn.Module, sparsity: float): |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
return super().set_master_dnn_sparsity(master_dnn, sparsity) |
|
|
|
def select_most_rep_sample(self, master_dnn: nn.Module, samples: torch.Tensor): |
|
|
|
|
|
res = {k: v[0: 1] for k, v in samples.items()} |
|
return res |
|
|
|
def extract_surrogate_dnn_via_samples(self, master_dnn: nn.Module, samples: torch.Tensor, return_detail=False): |
|
sample = self.select_most_rep_sample(master_dnn, samples) |
|
|
|
|
|
|
|
master_dnn.eval() |
|
self.clear_cached_channel_attention_in_master_dnn(master_dnn) |
|
with torch.no_grad(): |
|
master_dnn_output = master_dnn(**sample) |
|
|
|
|
|
|
|
boosted_vit = deepcopy(master_dnn) |
|
|
|
def get_unpruned_indexes_from_channel_attn(channel_attn: torch.Tensor, k): |
|
assert channel_attn.size(0) == 1, 'use A representative sample to generate channel attentions' |
|
|
|
|
|
|
|
res = channel_attn[0].nonzero(as_tuple=True)[0] |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
return res |
|
|
|
unpruned_indexes_of_layers = {} |
|
|
|
|
|
|
|
for block_i, block in enumerate(boosted_vit.bert.encoder.layer): |
|
|
|
|
|
|
|
ff_0 = get_module(block, f'intermediate.dense') |
|
|
|
ff_0_pruned_indexes = ff_0.k_takes_all.cached_i[0].sort()[0] |
|
ff_0_unpruned_indexes = torch.LongTensor([ii for ii in range(ff_0.cached_channel_attention.size(1)) if ii not in ff_0_pruned_indexes]) |
|
new_ff_0 = nn.Linear(ff_0.linear.in_features, ff_0_unpruned_indexes.size(0), ff_0.linear.bias is not None) |
|
new_ff_0.weight.data.copy_(ff_0.linear.weight.data[ff_0_unpruned_indexes]) |
|
if ff_0.linear.bias is not None: |
|
new_ff_0.bias.data.copy_(ff_0.linear.bias.data[ff_0_unpruned_indexes]) |
|
set_module(block, 'intermediate.dense', nn.Sequential(new_ff_0, StaticFBS(ff_0.cached_channel_attention[:, ff_0_unpruned_indexes]))) |
|
|
|
ff_1 = get_module(block, f'output.dense') |
|
new_ff_1 = nn.Linear(ff_0_unpruned_indexes.size(0), ff_1.out_features, ff_1.bias is not None) |
|
new_ff_1.weight.data.copy_(ff_1.weight.data[:, ff_0_unpruned_indexes]) |
|
if ff_1.bias is not None: |
|
new_ff_1.bias.data.copy_(ff_1.bias.data) |
|
set_module(block, 'output.dense', new_ff_1) |
|
|
|
unpruned_indexes_of_layers[f'bert.encoder.layer.{block_i}.intermediate.dense.0.weight'] = ff_0_unpruned_indexes |
|
|
|
surrogate_dnn = boosted_vit |
|
surrogate_dnn.eval() |
|
surrogate_dnn = surrogate_dnn.to(get_model_device(master_dnn)) |
|
|
|
with torch.no_grad(): |
|
surrogate_dnn_output = surrogate_dnn(**sample) |
|
|
|
output_diff = ((surrogate_dnn_output - master_dnn_output) ** 2).sum() |
|
|
|
logger.info(f'output diff of master and surrogate DNN: {output_diff}') |
|
logger.debug(f'example output of master/surrogate: {master_dnn_output.sum(0)[0: 10]}, {surrogate_dnn_output.sum(0)[0: 10]}') |
|
|
|
|
|
|
|
if return_detail: |
|
return boosted_vit, unpruned_indexes_of_layers |
|
|
|
return boosted_vit |
|
|
|
def extract_surrogate_dnn_via_samples_with_perf_test(self, master_dnn: nn.Module, samples: torch.Tensor, return_detail=False): |
|
master_dnn_size = get_model_size(master_dnn, True) |
|
master_dnn_latency = self._get_model_latency(master_dnn, samples, 50, |
|
get_model_device(master_dnn), 50, False) |
|
|
|
res = self.extract_surrogate_dnn_via_samples(master_dnn, samples, return_detail) |
|
if not return_detail: |
|
surrogate_dnn = res |
|
else: |
|
surrogate_dnn, unpruned_indexes_of_layers = res |
|
surrogate_dnn_size = get_model_size(surrogate_dnn, True) |
|
surrogate_dnn_latency = self._get_model_latency(master_dnn, samples, 50, |
|
get_model_device(master_dnn), 50, False) |
|
|
|
logger.info(f'master DNN ({master_dnn_size:.3f}MB, {master_dnn_latency:.4f}s/sample) -> ' |
|
f'surrogate DNN ({surrogate_dnn_size:.3f}MB, {surrogate_dnn_latency:.4f}s/sample)\n' |
|
f'(model size: ↓ {(master_dnn_size / surrogate_dnn_size):.2f}x, ' |
|
f'latency: ↓ {(master_dnn_latency / surrogate_dnn_latency):.2f}x)') |
|
|
|
return res |
|
|
|
def _get_model_latency(self, model: torch.nn.Module, model_input_size, sample_num: int, |
|
device: str, warmup_sample_num: int, return_detail=False): |
|
import time |
|
|
|
if isinstance(model_input_size, tuple): |
|
dummy_input = torch.rand(model_input_size).to(device) |
|
else: |
|
dummy_input = model_input_size |
|
|
|
model = model.to(device) |
|
model.eval() |
|
|
|
|
|
with torch.no_grad(): |
|
for _ in range(warmup_sample_num): |
|
model(**dummy_input) |
|
|
|
infer_time_list = [] |
|
|
|
if device == 'cuda' or 'cuda' in str(device): |
|
with torch.no_grad(): |
|
for _ in range(sample_num): |
|
s, e = torch.cuda.Event(enable_timing=True), torch.cuda.Event(enable_timing=True) |
|
s.record() |
|
model(**dummy_input) |
|
e.record() |
|
torch.cuda.synchronize() |
|
cur_model_infer_time = s.elapsed_time(e) / 1000. |
|
infer_time_list += [cur_model_infer_time] |
|
|
|
else: |
|
with torch.no_grad(): |
|
for _ in range(sample_num): |
|
start = time.time() |
|
model(**dummy_input) |
|
cur_model_infer_time = time.time() - start |
|
infer_time_list += [cur_model_infer_time] |
|
|
|
avg_infer_time = sum(infer_time_list) / sample_num |
|
|
|
if return_detail: |
|
return avg_infer_time, infer_time_list |
|
return avg_infer_time |
|
|
|
def bert_base_sen_cls(num_classes): |
|
return BertForSenCls(num_classes) |