Spaces:
Running
Running
from typing import Any, Dict | |
from schema import Schema, Or | |
import schema | |
from data import Scenario, MergedDataset | |
from methods.base.alg import BaseAlg | |
from data import build_dataloader | |
from ..model import ElasticDNN_OfflineFMModel, ElasticDNN_OfflineMDModel | |
from ...model.base import ElasticDNNUtil | |
import torch.optim | |
import tqdm | |
import torch.nn.functional as F | |
from torch import nn | |
from utils.dl.common.env import create_tbwriter | |
import os | |
import random | |
import numpy as np | |
from copy import deepcopy | |
from utils.dl.common.model import LayerActivation, get_module | |
from utils.common.log import logger | |
class ElasticDNN_MDPretrainingAlg(BaseAlg): | |
""" | |
construct indexes between a filter/row of MD and all filters/rows of FM in the same layer | |
too huge indexes (~1GB), train so slow, hard to optimize | |
""" | |
def get_required_models_schema(self) -> Schema: | |
return Schema({ | |
'fm': ElasticDNN_OfflineFMModel, | |
'md': ElasticDNN_OfflineMDModel | |
}) | |
def get_required_hyp_schema(self) -> Schema: | |
return Schema({ | |
'launch_tbboard': bool, | |
'samples_size': (int, int, int, int), | |
'generate_md_width_ratio': int, | |
'FBS_r': int, | |
'FBS_ignore_layers': [str], | |
'train_batch_size': int, | |
'val_batch_size': int, | |
'num_workers': int, | |
'optimizer': str, | |
'md_optimizer_args': dict, | |
'indexes_optimizer_args': dict, | |
'scheduler': str, | |
'scheduler_args': dict, | |
'num_iters': int, | |
'val_freq': int, | |
'max_sparsity': float, | |
'min_sparsity': float, | |
'distill_loss_weight': float, | |
'index_loss_weight': float, | |
'val_num_sparsities': int, | |
'bn_cal_num_iters': int, | |
'index_guided_linear_comb_split_size': Or(int, None) | |
}) | |
def upsample_2d_tensor(self, p: torch.Tensor, target_len: int): | |
assert p.dim() == 2 # regard 2d weight as (batch_size, 1d_vector_dim) | |
return F.upsample(p.unsqueeze(1).unsqueeze(3), | |
size=(target_len, 1), | |
mode='bilinear').squeeze(3).squeeze(1) | |
def two_params_diff_fast(self, trained_p: torch.Tensor, ref_p: torch.Tensor, | |
index: torch.Tensor, | |
split_size: int): | |
assert trained_p.dim() == ref_p.dim() | |
assert index.size(0) == trained_p.size(0) and index.size(1) == ref_p.size(0) | |
# print(trained_p.size(), ref_p.size(), index.size()) | |
ref_p = ref_p.detach() | |
if trained_p.dim() > 1: | |
trained_p = trained_p.flatten(1) | |
ref_p = ref_p.flatten(1) | |
# the weight size of master DNN and foundation model may be totally different | |
# MD -> FM: upsample first | |
# FM -> MD: downsample first | |
if trained_p.size(1) < ref_p.size(1): | |
trained_p = self.upsample_2d_tensor(trained_p, ref_p.size(1)) | |
index = index.unsqueeze(-1) | |
# linear_combed_ref_p = (ref_p.unsqueeze(0) * index).sum(1) | |
# else: | |
# print(trained_p.size(), ref_p.size(), index.size()) | |
if split_size is None: | |
# old version: huge memory consumption, not recommended (although this is fastest) | |
# print('old version') | |
linear_combed_ref_p = (ref_p.unsqueeze(0) * index).sum(1) | |
else: | |
# new version | |
linear_combed_ref_p = 0 | |
cur_split_size = split_size | |
while index.size(1) % cur_split_size != 0: | |
cur_split_size -= 1 | |
# print(cur_split_size) | |
for i in range(0, index.size(1), cur_split_size): | |
# if not isinstance(linear_combed_ref_p, int): | |
# print(linear_combed_ref_p.size(), ref_p.unsqueeze(0)[:, i: i + cur_split_size].size(), index[:, i: i + cur_split_size].size()) | |
linear_combed_ref_p += ref_p.unsqueeze(0)[:, i: i + cur_split_size] * index[:, i: i + cur_split_size] | |
linear_combed_ref_p = linear_combed_ref_p.sum(1) | |
diff = (linear_combed_ref_p - trained_p).norm(2) ** 2 | |
return diff | |
def get_index_loss(self, fm, md, indexes, match_fn, split_size): | |
res = 0. | |
for name, p in md.named_parameters(): | |
if p.dim() == 0: | |
continue | |
raw_p = match_fn(name, fm) | |
if raw_p is None: | |
continue | |
index = indexes[name] | |
# print(name) | |
res += self.two_params_diff_fast(p, raw_p, index, split_size) | |
return res | |
def bn_cal(self, model: nn.Module, train_loader, num_iters, device): | |
has_bn = False | |
for n, m in model.named_modules(): | |
if isinstance(m, nn.BatchNorm2d): | |
has_bn = True | |
break | |
if not has_bn: | |
return {} | |
def bn_calibration_init(m): | |
""" calculating post-statistics of batch normalization """ | |
if getattr(m, 'track_running_stats', False): | |
# reset all values for post-statistics | |
m.reset_running_stats() | |
# set bn in training mode to update post-statistics | |
m.training = True | |
with torch.no_grad(): | |
model.eval() | |
model.apply(bn_calibration_init) | |
for _ in range(num_iters): | |
x, _ = next(train_loader) | |
model(x.to(device)) | |
model.eval() | |
bn_stats = {} | |
for n, m in model.named_modules(): | |
if isinstance(m, nn.BatchNorm2d): | |
bn_stats[n] = m | |
return bn_stats | |
def run(self, scenario: Scenario, hyps: Dict) -> Dict[str, Any]: | |
super().run(scenario, hyps) | |
# sanity check | |
# a= torch.tensor([[1, 2, 3], [1, 2, 4]]) | |
# index = torch.tensor([[1, 2, 3], | |
# [1, 2, 4]]) | |
# b = torch.tensor([[1, 2, 3], [1, 2, 4], [2, 3, 4]]) | |
# print(self.two_params_diff_fast(a, b, index, hyps['index_guided_linear_comb_split_size'])) | |
assert isinstance(self.models['md'], ElasticDNN_OfflineMDModel) # for auto completion | |
assert isinstance(self.models['fm'], ElasticDNN_OfflineFMModel) # for auto completion | |
# 1. add FBS | |
device = self.models['md'].device | |
logger.info(f'init master DNN by reducing width of an adapted foundation model (already tuned by LoRA)...') | |
before_fm_model = deepcopy(self.models['fm'].models_dict['main']) | |
lora_util = self.models['fm'].get_lora_util() | |
lora_absorbed_fm_model = lora_util.absorb_lora_and_recover_net_structure(self.models['fm'].models_dict['main'], | |
torch.rand(hyps['samples_size']).to(device)) | |
self.models['fm'].models_dict['main'] = lora_absorbed_fm_model | |
master_dnn = self.models['fm'].generate_md_by_reducing_width(hyps['generate_md_width_ratio'], | |
torch.rand(hyps['samples_size']).to(device)) | |
self.models['fm'].models_dict['main'] = before_fm_model | |
elastic_dnn_util = self.models['fm'].get_elastic_dnn_util() | |
master_dnn = elastic_dnn_util.convert_raw_dnn_to_master_dnn_with_perf_test(master_dnn, | |
hyps['FBS_r'], hyps['FBS_ignore_layers']) | |
self.models['md'].models_dict['main'] = master_dnn | |
self.models['md'].to(device) | |
# 2. train (knowledge distillation, index relationship) | |
offline_datasets = scenario.get_offline_datasets() | |
train_dataset = MergedDataset([d['train'] for d in offline_datasets.values()]) | |
val_dataset = MergedDataset([d['val'] for d in offline_datasets.values()]) | |
train_loader = iter(build_dataloader(train_dataset, hyps['train_batch_size'], hyps['num_workers'], | |
True, None)) | |
val_loader = build_dataloader(val_dataset, hyps['val_batch_size'], hyps['num_workers'], | |
False, False) | |
# 2.1 train only FBS (skipped because current md cannot do proper inference) | |
# 2.2 train whole master DNN (knowledge distillation, index relationship) | |
for p in master_dnn.parameters(): | |
p.requires_grad = True | |
self.models['md'].to_train_mode() | |
indexes = {} | |
for name, p in self.models['md'].models_dict['main'].named_parameters(): | |
if p.dim() > 0: | |
matched_p_in_fm = self.models['md'].get_matched_param_of_fm(name, self.models['fm'].models_dict['main']) | |
if matched_p_in_fm is None: | |
continue | |
indexes[name] = torch.zeros((p.size(0), matched_p_in_fm.size(0))).to(device) | |
indexes[name].requires_grad = True | |
tmp_indexes_file_path = os.path.join(self.res_save_dir, 'tmp-indexes.pt') | |
torch.save(indexes, tmp_indexes_file_path) | |
logger.info(f'generate indexes ({(os.path.getsize(tmp_indexes_file_path) / 1024**2):.3f}MB)') | |
os.remove(tmp_indexes_file_path) | |
optimizer = torch.optim.__dict__[hyps['optimizer']]([ | |
{'params': self.models['md'].models_dict['main'].parameters(), **hyps['md_optimizer_args']}, | |
{'params': [v for v in indexes.values()], **hyps['indexes_optimizer_args']} | |
]) | |
scheduler = torch.optim.lr_scheduler.__dict__[hyps['scheduler']](optimizer, **hyps['scheduler_args']) | |
tb_writer = create_tbwriter(os.path.join(self.res_save_dir, 'tb_log'), launch_tbboard=hyps['launch_tbboard']) | |
pbar = tqdm.tqdm(range(hyps['num_iters']), dynamic_ncols=True) | |
best_avg_val_acc = 0. | |
md_output_hook = None | |
for iter_index in pbar: | |
self.models['md'].to_train_mode() | |
self.models['fm'].to_eval_mode() | |
rand_sparsity = random.random() * (hyps['max_sparsity'] - hyps['min_sparsity']) + hyps['min_sparsity'] | |
elastic_dnn_util.set_master_dnn_sparsity(self.models['md'].models_dict['main'], rand_sparsity) | |
x, y = next(train_loader) | |
x, y = x.to(device), y.to(device) | |
with torch.no_grad(): | |
fm_output = self.models['fm'].infer(x) | |
if md_output_hook is None: | |
md_output_hook = LayerActivation(self.models['md'].models_dict['main'], False, device) | |
task_loss = self.models['md'].forward_to_get_task_loss(x, y) | |
md_output = md_output_hook.output | |
distill_loss = hyps['distill_loss_weight'] * self.models['md'].get_distill_loss(md_output, fm_output) | |
index_loss = hyps['index_loss_weight'] * self.get_index_loss(self.models['fm'].models_dict['main'], | |
self.models['md'].models_dict['main'], | |
indexes, | |
self.models['md'].get_matched_param_of_fm, | |
hyps['index_guided_linear_comb_split_size']) | |
total_loss = task_loss + distill_loss + index_loss | |
optimizer.zero_grad() | |
total_loss.backward() | |
optimizer.step() | |
scheduler.step() | |
if (iter_index + 1) % hyps['val_freq'] == 0: | |
elastic_dnn_util.clear_cached_channel_attention_in_master_dnn(self.models['md'].models_dict['main']) | |
md_output_hook.remove() | |
md_output_hook = None | |
cur_md = self.models['md'].models_dict['main'] | |
md_for_test = deepcopy(self.models['md'].models_dict['main']) | |
val_accs = {} | |
avg_val_acc = 0. | |
bn_stats = {} | |
for val_sparsity in np.linspace(hyps['min_sparsity'], hyps['max_sparsity'], num=hyps['val_num_sparsities']): | |
elastic_dnn_util.set_master_dnn_sparsity(md_for_test, val_sparsity) | |
bn_stats[f'{val_sparsity:.4f}'] = self.bn_cal(md_for_test, train_loader, hyps['bn_cal_num_iters'], device) | |
self.models['md'].models_dict['main'] = md_for_test | |
self.models['md'].to_eval_mode() | |
val_acc = self.models['md'].get_accuracy(val_loader) | |
val_accs[f'{val_sparsity:.4f}'] = val_acc | |
avg_val_acc += val_acc | |
avg_val_acc /= hyps['val_num_sparsities'] | |
self.models['md'].models_dict['main'] = cur_md | |
self.models['md'].models_dict['indexes'] = indexes | |
self.models['md'].models_dict['bn_stats'] = bn_stats | |
self.models['fm'].models_dict['indexes'] = indexes | |
self.models['md'].save_model(os.path.join(self.res_save_dir, 'models/md_last.pt')) | |
self.models['fm'].save_model(os.path.join(self.res_save_dir, 'models/fm_last.pt')) | |
if avg_val_acc > best_avg_val_acc: | |
best_avg_val_acc = avg_val_acc | |
self.models['md'].save_model(os.path.join(self.res_save_dir, 'models/md_best.pt')) | |
self.models['fm'].save_model(os.path.join(self.res_save_dir, 'models/fm_best.pt')) | |
tb_writer.add_scalars(f'losses', dict(task=task_loss, distill=distill_loss, index=index_loss, total=total_loss), iter_index) | |
pbar.set_description(f'loss: {total_loss:.6f}') | |
if (iter_index + 1) >= hyps['val_freq']: | |
tb_writer.add_scalars(f'accs/val_accs', val_accs, iter_index) | |
tb_writer.add_scalar(f'accs/avg_val_acc', avg_val_acc, iter_index) | |
pbar.set_description(f'loss: {total_loss:.6f}, avg_val_acc: {avg_val_acc:.4f}') | |