Spaces:
Running
Running
from typing import Any, Dict | |
from schema import Schema | |
from data import Scenario, MergedDataset | |
from methods.base.alg import BaseAlg | |
from data import build_dataloader | |
from ..model import ElasticDNN_OfflineFMModel | |
from ...model.base import ElasticDNNUtil | |
import torch.optim | |
import tqdm | |
from torch import nn | |
from torchvision.transforms import Compose | |
from utils.dl.common.env import create_tbwriter | |
import os | |
import random | |
import numpy as np | |
from copy import deepcopy | |
from utils.dl.common.model import get_module | |
from utils.common.log import logger | |
class ElasticDNN_FMLoRAAlg(BaseAlg): | |
def get_required_models_schema(self) -> Schema: | |
return Schema({ | |
'fm': ElasticDNN_OfflineFMModel | |
}) | |
def get_required_hyp_schema(self) -> Schema: | |
from schema import Optional | |
return Schema({ | |
'launch_tbboard': bool, | |
'samples_size': object, | |
'ab_r': int, | |
'train_batch_size': int, | |
'val_batch_size': int, | |
'num_workers': int, | |
'optimizer': str, | |
'optimizer_args': dict, | |
'scheduler': str, | |
'scheduler_args': dict, | |
'num_iters': int, | |
'val_freq': int, | |
Optional('fm_lora_ckpt_path'): str, | |
Optional('transform'): Compose, | |
}) | |
def run(self, scenario: Scenario, hyps: Dict, collate_fn=None) -> Dict[str, Any]: | |
super().run(scenario, hyps) | |
assert isinstance(self.models['fm'], ElasticDNN_OfflineFMModel) # for auto completion | |
# 1. add LoRA | |
lora_util = self.models['fm'].get_lora_util() | |
device = self.models['fm'].device | |
sample = hyps['samples_size'] | |
if isinstance(sample, (tuple, list)) and isinstance(sample[0], int): | |
sample = torch.rand(hyps['samples_size']).to(device) | |
lora_util.add_lora_ab_to_fm(self.models['fm'].models_dict['main'], hyps['ab_r'], sample) | |
if 'fm_lora_ckpt_path' in hyps.keys() and hyps['fm_lora_ckpt_path'] != '' and hyps['fm_lora_ckpt_path'] is not None: | |
_ckpt = torch.load(hyps['fm_lora_ckpt_path'])['main'] | |
new_state_dict = deepcopy(self.models['fm'].models_dict['main'].state_dict()) | |
for n, p in _ckpt.named_parameters(): | |
if 'qkv.abs' not in n: | |
continue | |
new_state_dict[n] = p | |
logger.info(f'use {n} from ckpt') | |
self.models['fm'].models_dict['main'].load_state_dict(new_state_dict) | |
# 2. train (knowledge distillation, index relationship) | |
if 'transform' in hyps.keys(): | |
offline_datasets = scenario.get_offline_datasets(transform=hyps['transform']) | |
else: | |
offline_datasets = scenario.get_offline_datasets() | |
train_dataset = MergedDataset([d['train'] for d in offline_datasets.values()]) | |
# debug | |
# from data.visualize import visualize_classes_in_object_detection | |
# d = offline_datasets['GTA5Det']['val'] | |
# class_to_idx_map = {c: d.idx_map[i] for i, c in enumerate(d.classes)} | |
# print(class_to_idx_map) | |
# visualize_classes_in_object_detection(d, class_to_idx_map, | |
# {}, os.path.join(self.res_save_dir, 'debug.png')) | |
# exit() | |
val_dataset = MergedDataset([d['val'] for d in offline_datasets.values()]) | |
train_loader = iter(build_dataloader(train_dataset, hyps['train_batch_size'], hyps['num_workers'], | |
True, None, collate_fn=collate_fn)) | |
# if hyps['use_train_loader_for_val']: | |
# val_loader = build_dataloader(train_dataset, hyps['val_batch_size'], hyps['num_workers'], | |
# False, False) | |
# logger.warn('use train loader for val!!!') | |
# else: | |
val_loader = build_dataloader(val_dataset, hyps['val_batch_size'], hyps['num_workers'], | |
False, False, collate_fn=collate_fn) | |
lora_params = lora_util.train_only_lora(self.models['fm'].models_dict['main']) | |
head_params = self.models['fm'].get_task_head_params() | |
num_lora_params = sum([np.prod(p.size()) for p in lora_params]) | |
total_params = sum([np.prod(p.size()) for p in self.models['fm'].models_dict['main'].parameters()]) | |
logger.info(f'num lora params: {num_lora_params}, total params: {total_params}, ratio: {num_lora_params / total_params}') | |
optimizer = torch.optim.__dict__[hyps['optimizer']](lora_params + head_params, **hyps['optimizer_args']) | |
scheduler = torch.optim.lr_scheduler.__dict__[hyps['scheduler']](optimizer, **hyps['scheduler_args']) | |
fbs_tb_writer = create_tbwriter(os.path.join(self.res_save_dir, 'tb_log'), launch_tbboard=hyps['launch_tbboard']) | |
pbar = tqdm.tqdm(range(hyps['num_iters']), dynamic_ncols=True) | |
best_val_acc = 0 | |
val_acc = 0 | |
for iter_index in pbar: | |
self.models['fm'].to_train_mode() | |
x, y = next(train_loader) | |
if isinstance(x, dict): | |
for k, v in x.items(): | |
if isinstance(v, torch.Tensor): | |
x[k] = v.to(device) | |
y = y.to(device) | |
else: | |
x, y = x.to(device), y.to(device) | |
task_loss = self.models['fm'].forward_to_get_task_loss(x, y) | |
optimizer.zero_grad() | |
task_loss.backward() | |
optimizer.step() | |
scheduler.step() | |
if (iter_index + 1) % hyps['val_freq'] == 0: | |
# logger.warn('use train loader for val!!!') | |
self.models['fm'].to_eval_mode() | |
val_acc = self.models['fm'].get_accuracy(val_loader) | |
self.models['fm'].save_model(os.path.join(self.res_save_dir, 'models/fm_last.pt')) | |
if val_acc > best_val_acc: | |
best_val_acc = val_acc | |
self.models['fm'].save_model(os.path.join(self.res_save_dir, 'models/fm_best.pt')) | |
fbs_tb_writer.add_scalar(f'losses/task_loss', task_loss, iter_index) | |
fbs_tb_writer.add_scalar(f'accs/val_acc', val_acc, iter_index) | |
fbs_tb_writer.add_scalar(f'lr', optimizer.param_groups[0]['lr'], iter_index) | |
pbar.set_description(f'loss: {task_loss:.6f}, val_acc: {val_acc:.4f}') | |