Spaces:
Running
Running
from utils.common.data_record import read_json, write_json | |
from data.datasets.visual_question_answering.glossary import normalize_word | |
from collections import defaultdict, Counter | |
from tqdm import tqdm | |
ann_data = read_json('/data/zql/datasets/vqav2/Annotations/v2_mscoco_train2014_annotations.json') | |
question_data = read_json('/data/zql/datasets/vqav2/Questions/v2_OpenEnded_mscoco_train2014_questions.json') | |
question_to_id = {} | |
for q in tqdm(question_data['questions']): | |
question_to_id[q['question_id']] = q['question'] | |
classes_set = [] | |
for ann in ann_data['annotations']: | |
classes_set += [normalize_word(ann['multiple_choice_answer'])] | |
counter = {k: v for k, v in Counter(classes_set).items() if v >= 9} | |
ans2label = {k: i for i, k in enumerate(counter.keys())} | |
label2ans = list(counter.keys()) | |
# print(list(ans2label.keys())) | |
# exit() | |
available_classes = list(ans2label.values()) | |
classes_split_1 = available_classes[0: 100] | |
classes_split_2 = available_classes[100: ] | |
print(classes_split_1) | |
dataset_info_1 = [] # (image_file_path, question, labels, scores) | |
dataset_info_2 = [] # (image_file_path, question, labels, scores) | |
def get_score(occurences): | |
if occurences == 0: | |
return 0.0 | |
elif occurences == 1: | |
return 0.3 | |
elif occurences == 2: | |
return 0.6 | |
elif occurences == 3: | |
return 0.9 | |
else: | |
return 1.0 | |
ii = 0 | |
pbar = tqdm(ann_data['annotations']) | |
for q in pbar: | |
answers = q["answers"] | |
answer_count = {} | |
for answer in answers: | |
answer_ = answer["answer"] | |
answer_count[answer_] = answer_count.get(answer_, 0) + 1 | |
labels = [] | |
scores = [] | |
for answer in answer_count: | |
if answer not in ans2label: | |
continue | |
labels.append(ans2label[answer]) | |
score = get_score(answer_count[answer]) | |
scores.append(score) | |
if len(labels) == 0: | |
continue | |
# annotations[q["image_id"]][q["question_id"]].append( | |
# {"labels": labels, "scores": scores,} | |
# ) | |
# full_label = [0] * len(ans2label) | |
# for label_idx, score in zip(labels, scores): | |
# full_label[label_idx] = score | |
if all([label in classes_split_1 for label in labels]): | |
dataset_info_1 += [(q["image_id"], question_to_id[q["question_id"]], labels, scores)] | |
elif all([label in classes_split_2 for label in labels]): | |
dataset_info_2 += [(q["image_id"], question_to_id[q["question_id"]], [ii - 100 for ii in labels], scores)] | |
else: | |
# print('ignore') | |
pass | |
# dataset_info += [(q["image_id"], question_to_id[q["question_id"]], labels, scores)] | |
pbar.set_description(f'# samples: {len(dataset_info_1)}, {len(dataset_info_2)}') | |
# print(dataset_info[-1]) | |
# break | |
# if ii < 10: | |
# print(dataset_info[-1]) | |
# ii += 1 | |
write_json('/data/zql/datasets/vqav2/label1.json', dataset_info_1) | |
write_json('/data/zql/datasets/vqav2/label2.json', dataset_info_2) | |