Spaces:
Running
Running
from sklearn.datasets import fetch_20newsgroups | |
# from pprint import pprint | |
# newsgroups_train = fetch_20newsgroups(subset='train') | |
# print(newsgroups_train.target_names) | |
# print(newsgroups_train['data'][0]) | |
import os | |
import torch | |
from torch.utils.data import Dataset, DataLoader | |
from transformers import BertTokenizer, BertForSequenceClassification | |
from torch.optim import Adam | |
from torch.nn import CrossEntropyLoss | |
from typing import Dict, List, Optional, Any | |
from utils.common.data_record import read_json | |
from .global_bert_tokenizer import get_tokenizer | |
class NewsgroupDomainsDataset(Dataset): | |
def __init__(self, root_dir: str, split: str, transform: Any, | |
classes: List[str], ignore_classes: List[str], idx_map: Optional[Dict[int, int]]): | |
assert transform is None | |
self.tokenizer = get_tokenizer() # 传入tokenizer对象 | |
self.texts = [] | |
self.labels = [] | |
self.max_length = None # 设置文本的最大长度 | |
# json_file_path = os.path.join(root_dir, f'{split if split != "val" else "dev"}.json') | |
# anns = read_json(json_file_path) | |
# label_map = {'-': 0, '+': 1, 'negative': 0, 'positive': 1} | |
ignore_cls_indexes = [classes.index(c) for c in ignore_classes] | |
# for v in anns.values(): | |
# if v['polarity'] not in label_map.keys(): | |
# continue | |
# cls = label_map[v['polarity']] | |
# if cls in ignore_cls_indexes: | |
# continue | |
# self.texts += [v['sentence']] | |
# self.labels += [idx_map[cls] if idx_map is not None else cls] | |
if split == 'val': | |
split = 'test' | |
data = fetch_20newsgroups(subset=split) | |
self.texts = [i for _i, i in enumerate(data['data']) if data['target'][_i] not in ignore_cls_indexes] | |
self.labels = [i for i in data['target'] if i not in ignore_cls_indexes] | |
self.labels = [idx_map[i] if idx_map is not None else i for i in self.labels] | |
def __len__(self): | |
return len(self.texts) | |
def __getitem__(self, idx): | |
text = self.texts[idx] | |
label = self.labels[idx] | |
encoded_input = self.tokenizer.encode_plus( | |
text, max_length=self.max_length, padding="max_length", truncation=True, return_tensors="pt" | |
) | |
x = {key: tensor.squeeze(0) for key, tensor in encoded_input.items()} | |
x['return_dict'] = False | |
return x, torch.tensor(label) | |
from ..ab_dataset import ABDataset | |
from ..registery import dataset_register | |
class Newsgroup(ABDataset): | |
def create_dataset(self, root_dir: str, split: str, transform, | |
classes: List[str], ignore_classes: List[str], idx_map: Optional[Dict[int, int]]): | |
return NewsgroupDomainsDataset(root_dir, split, transform, classes, ignore_classes, idx_map) | |
class Newsgroup2(ABDataset): | |
def create_dataset(self, root_dir: str, split: str, transform, | |
classes: List[str], ignore_classes: List[str], idx_map: Optional[Dict[int, int]]): | |
return NewsgroupDomainsDataset(root_dir, split, transform, classes, ignore_classes, idx_map) | |
class Newsgroup3(ABDataset): | |
def create_dataset(self, root_dir: str, split: str, transform, | |
classes: List[str], ignore_classes: List[str], idx_map: Optional[Dict[int, int]]): | |
return NewsgroupDomainsDataset(root_dir, split, transform, classes, ignore_classes, idx_map) |