Spaces:
Running
Running
from ..data_aug import cityscapes_like_image_train_aug, cityscapes_like_image_test_aug, cityscapes_like_label_aug | |
from .common_dataset import CommonDataset | |
from ..ab_dataset import ABDataset | |
from ..dataset_split import train_val_test_split | |
import numpy as np | |
from typing import Dict, List, Optional | |
from torchvision.transforms import Compose, Lambda | |
import os | |
from ..registery import dataset_register | |
class BaiduPerson(ABDataset): | |
def create_dataset(self, root_dir: str, split: str, transform: Optional[Compose], | |
classes: List[str], ignore_classes: List[str], idx_map: Optional[Dict[int, int]]): | |
if transform is None: | |
x_transform = cityscapes_like_image_train_aug() if split == 'train' else cityscapes_like_image_test_aug() | |
y_transform = cityscapes_like_label_aug() | |
self.transform = x_transform | |
else: | |
x_transform = transform | |
y_transform = cityscapes_like_label_aug() | |
images_path, labels_path = [], [] | |
for p in os.listdir(os.path.join(root_dir, 'images')): | |
images_path += [os.path.join(root_dir, 'images', p)] | |
labels_path += [os.path.join(root_dir, 'profiles', p.split('.')[0] + '-profile.jpg')] | |
idx_map_in_y_transform = {i: i for i in range(len(classes))} | |
# dataset.targets = np.asarray(dataset.targets) | |
if len(ignore_classes) > 0: | |
for ignore_class in ignore_classes: | |
# dataset.data = dataset.data[dataset.targets != classes.index(ignore_class)] | |
# dataset.targets = dataset.targets[dataset.targets != classes.index(ignore_class)] | |
idx_map_in_y_transform[ignore_class] = 255 | |
if idx_map is not None: | |
# note: the code below seems correct but has bug! | |
# for old_idx, new_idx in idx_map.items(): | |
# dataset.targets[dataset.targets == old_idx] = new_idx | |
# for ti, t in enumerate(dataset.targets): | |
# dataset.targets[ti] = idx_map[t] | |
for k, v in idx_map.items(): | |
idx_map_in_y_transform[k] = v | |
def map_class(x): | |
x[x > 1] = 1 # 0: background; 1: person | |
for k, v in idx_map_in_y_transform.items(): | |
x[x == k] = v | |
return x | |
y_transform = Compose([ | |
*y_transform.transforms, | |
Lambda(lambda x: map_class(x)) | |
]) | |
dataset = CommonDataset(images_path, labels_path, x_transform=x_transform, y_transform=y_transform) | |
dataset = train_val_test_split(dataset, split) | |
return dataset | |