Spaces:
Running
Running
from ..data_aug import pil_image_to_tensor | |
from ..ab_dataset import ABDataset | |
from ..dataset_split import train_val_split | |
from ..dataset_cache import get_dataset_cache_path, read_cached_dataset_status, cache_dataset_status | |
from .mm_image_folder import MMImageFolder | |
import os | |
from typing import Dict, List, Optional | |
from torchvision.transforms import Compose | |
from ..registery import dataset_register | |
with open(os.path.join(os.path.dirname(__file__), 'imagenet_classes.txt'), 'r') as f: | |
classes = [line.split(' ')[2].strip() for line in f.readlines()] | |
assert len(classes) == 1000 | |
class ImageNet32(ABDataset): | |
def create_dataset(self, root_dir: str, split: str, transform: Optional[Compose], | |
classes: List[str], ignore_classes: List[str], idx_map: Optional[Dict[int, int]]): | |
if transform is None: | |
transform = pil_image_to_tensor(32) | |
self.transform = transform | |
root_dir = os.path.join(root_dir, 'train' if split != 'test' else 'val') | |
dataset = MMImageFolder(root_dir, [c for c in classes if c not in ignore_classes], transform=transform) | |
cache_file_path = get_dataset_cache_path(root_dir, classes, ignore_classes, idx_map) | |
if os.path.exists(cache_file_path): | |
dataset.samples = read_cached_dataset_status(cache_file_path, 'ImageNet-' + split) | |
else: | |
if len(ignore_classes) > 0: | |
ignore_classes_idx = [classes.index(c) for c in ignore_classes] | |
dataset.samples = [s for s in dataset.samples if s[1] not in ignore_classes_idx] | |
if idx_map is not None: | |
dataset.samples = [(s[0], idx_map[s[1]]) if s[1] in idx_map.keys() else s for s in dataset.samples] | |
cache_dataset_status(dataset.samples, cache_file_path, 'ImageNet-' + split) | |
if split != 'test': | |
dataset = train_val_split(dataset, split) | |
return dataset | |