Spaces:
Running
Running
import enum | |
from ..data_aug import one_d_image_test_aug, one_d_image_train_aug | |
from ..ab_dataset import ABDataset | |
from ..dataset_split import train_val_split | |
from torchvision.datasets import EMNIST as RawEMNIST | |
import string | |
import numpy as np | |
from typing import Dict, List, Optional | |
from torchvision.transforms import Compose | |
from ..registery import dataset_register | |
class EMNIST(ABDataset): | |
def create_dataset(self, root_dir: str, split: str, transform: Optional[Compose], | |
classes: List[str], ignore_classes: List[str], idx_map: Optional[Dict[int, int]]): | |
if transform is None: | |
transform = one_d_image_train_aug() if split == 'train' else one_d_image_test_aug() | |
self.transform = transform | |
dataset = RawEMNIST(root_dir, 'byclass', train=split != 'test', transform=transform, download=True) | |
dataset.targets = np.asarray(dataset.targets) | |
if len(ignore_classes) > 0: | |
for ignore_class in ignore_classes: | |
dataset.data = dataset.data[dataset.targets != classes.index(ignore_class)] | |
dataset.targets = dataset.targets[dataset.targets != classes.index(ignore_class)] | |
if idx_map is not None: | |
# note: the code below seems correct but has bug! | |
# for old_idx, new_idx in idx_map.items(): | |
# dataset.targets[dataset.targets == old_idx] = new_idx | |
for ti, t in enumerate(dataset.targets): | |
dataset.targets[ti] = idx_map[t] | |
if split != 'test': | |
dataset = train_val_split(dataset, split) | |
return dataset | |