Spaces:
Running
Running
from ..data_aug import imagenet_like_image_train_aug, imagenet_like_image_test_aug | |
from ..ab_dataset import ABDataset | |
from ..dataset_split import train_val_split, train_val_test_split | |
from torchvision.datasets import ImageFolder | |
import os | |
from typing import Dict, List, Optional | |
from torchvision.transforms import Compose | |
from ..registery import dataset_register | |
# with open(os.path.join(os.path.dirname(__file__), 'fruits360_classes.txt'), 'r') as f: | |
# classes = [line.split(':')[0].strip('"') for line in f.readlines()] | |
# assert len(classes) == 131 | |
# gta_classes = [ | |
# 'road', 'sidewalk', 'building', 'wall', | |
# 'fence', 'pole', 'light', 'sign', | |
# 'vegetation', 'terrain', 'sky', 'people', # person | |
# 'rider', 'car', 'truck', 'bus', 'train', | |
# 'motocycle', 'bicycle' | |
# ] | |
# cityscapes_classes = [] | |
# ignore_label = 255 | |
# m = {-1: ignore_label, 0: ignore_label, 1: ignore_label, 2: ignore_label, | |
# 3: ignore_label, 4: ignore_label, 5: ignore_label, 6: ignore_label, | |
# 7: 0, 8: 1, 9: ignore_label, 10: ignore_label, 11: 2, 12: 3, 13: 4, | |
# 14: ignore_label, 15: ignore_label, 16: ignore_label, 17: 5, | |
# 18: ignore_label, 19: 6, 20: 7, 21: 8, 22: 9, 23: 10, 24: 11, 25: 12, 26: 13, 27: 14, | |
# 28: 15, 29: ignore_label, 30: ignore_label, 31: 16, 32: 17, 33: 18} | |
# for ci, c in enumerate(gta_classes): | |
# for k, v in m.items(): | |
# if v == ci: | |
# cityscapes_classes += [c] | |
# print(cityscapes_classes) | |
# exit() | |
class CityscapesCls(ABDataset): | |
def create_dataset(self, root_dir: str, split: str, transform: Optional[Compose], | |
classes: List[str], ignore_classes: List[str], idx_map: Optional[Dict[int, int]]): | |
if transform is None: | |
transform = imagenet_like_image_train_aug() if split == 'train' else imagenet_like_image_test_aug() | |
self.transform = transform | |
#root_dir = os.path.join(root_dir, 'train' if split != 'test' else 'val') | |
dataset = ImageFolder(root_dir, transform=transform) | |
if len(ignore_classes) > 0: | |
ignore_classes_idx = [classes.index(c) for c in ignore_classes] | |
dataset.samples = [s for s in dataset.samples if s[1] not in ignore_classes_idx] | |
if idx_map is not None: | |
dataset.samples = [(s[0], idx_map[s[1]]) if s[1] in idx_map.keys() else s for s in dataset.samples] | |
dataset = train_val_test_split(dataset, split) | |
return dataset | |