Spaces:
Running
Running
from ..data_aug import cityscapes_like_image_train_aug, cityscapes_like_image_test_aug, cityscapes_like_label_aug | |
# from torchvision.datasets import Cityscapes as RawCityscapes | |
from ..ab_dataset import ABDataset | |
from ..dataset_split import train_val_test_split | |
import numpy as np | |
from typing import Dict, List, Optional | |
from torchvision.transforms import Compose, Lambda | |
import os | |
from .common_dataset import VideoDataset | |
from ..registery import dataset_register | |
class HMDB51(ABDataset): # just for demo now | |
def create_dataset(self, root_dir: str, split: str, transform: Optional[Compose], | |
classes: List[str], ignore_classes: List[str], idx_map: Optional[Dict[int, int]]): | |
# if transform is None: | |
# x_transform = cityscapes_like_image_train_aug() if split == 'train' else cityscapes_like_image_test_aug() | |
# y_transform = cityscapes_like_label_aug() | |
# self.transform = x_transform | |
# else: | |
# x_transform, y_transform = transform | |
dataset = VideoDataset([root_dir], mode='train') | |
if len(ignore_classes) > 0: | |
for ignore_class in ignore_classes: | |
ci = classes.index(ignore_class) | |
dataset.fnames = [img for img, label in zip(dataset.fnames, dataset.label_array) if label != ci] | |
dataset.label_array = [label for label in dataset.label_array if label != ci] | |
if idx_map is not None: | |
dataset.label_array = [idx_map[label] for label in dataset.label_array] | |
dataset = train_val_test_split(dataset, split) | |
return dataset | |