Spaces:
Running
Running
template = """ | |
@dataset_register( | |
name='VQAv2_split1_c_{}', | |
classes=all_classes[0: 100], | |
task_type='Visual Question Answering', | |
object_type='Generic Object', | |
class_aliases=[], | |
shift_type=None | |
) | |
class VQAv2_split1_c_{}(ABDataset): | |
def create_dataset(self, root_dir: str, split: str, transform: Optional[Compose], | |
classes: List[str], ignore_classes: List[str], idx_map: Optional[Dict[int, int]]): | |
if transform is None: | |
transform = None | |
self.transform = transform | |
dataset = _VQAv2_split1_c(root_dir, split, "{}", classes, ignore_classes, idx_map) | |
return dataset | |
""" | |
# for c in 'gaussian_noise, shot_noise, impulse_noise, defocus_blur, glass_blur, motion_blur, zoom_blur, snow, frost, fog, brightness, contrast, elastic_transform, pixelate, jpeg_compression, speckle_noise, gaussian_blur, spatter, saturate'.split(', '): | |
# print(template.format(c, c, c)) | |
# print() | |
# break | |
classes_name = [f'VQAv2_split1_c_{c}' for c in 'gaussian_noise, shot_noise, impulse_noise, defocus_blur, glass_blur, motion_blur, zoom_blur, snow, frost, fog, brightness, contrast, elastic_transform, pixelate, jpeg_compression, speckle_noise, gaussian_blur, spatter, saturate'.split(', ')] | |
print(', '.join(classes_name)) |