from data import ABDataset | |
from utils.common.data_record import read_json, write_json | |
from PIL import Image | |
import os | |
from utils.common.file import ensure_dir | |
import numpy as np | |
from itertools import groupby | |
from skimage import morphology, measure | |
from PIL import Image | |
from scipy import misc | |
import tqdm | |
from PIL import ImageFile | |
ImageFile.LOAD_TRUNCATED_IMAGES = True | |
import shutil | |
def convert_seg_dataset_to_det(seg_imgs_path, seg_labels_path, root_dir, target_coco_ann_path, ignore_classes_idx, thread_i, min_img_size=224, label_after_hook=lambda x: x): | |
""" | |
Reference: https://blog.csdn.net/lizaijinsheng/article/details/119889946 | |
NOTE: | |
Background class should not be considered. | |
However, if a seg dataset has only one valid class, so that the generated cls dataset also has only one class and | |
the cls accuracy will be 100% forever. But we do not use the generated cls dataset alone, so it is ok. | |
""" | |
assert len(seg_imgs_path) == len(seg_labels_path) | |
classes_imgs_id_map = {} | |
coco_ann = { | |
'categories': [], | |
"type": "instances", | |
'images': [], | |
'annotations': [] | |
} | |
image_id = 0 | |
ann_id = 0 | |
pbar = tqdm.tqdm(zip(seg_imgs_path, seg_labels_path), total=len(seg_imgs_path), | |
dynamic_ncols=True, leave=False, desc=f'thread {thread_i}') | |
for seg_img_path, seg_label_path in pbar: | |
try: | |
seg_img = Image.open(seg_img_path) | |
seg_label = Image.open(seg_label_path).convert('L') | |
seg_label = np.array(seg_label) | |
seg_label = label_after_hook(seg_label) | |
except Exception as e: | |
print(e) | |
print(f'file {seg_img_path} error, skip') | |
exit() | |
# seg_img = Image.open(seg_img_path) | |
# seg_label = Image.open(seg_label_path).convert('L') | |
# seg_label = np.array(seg_label) | |
image_coco_info = {'file_name': os.path.relpath(seg_img_path, root_dir), 'height': seg_img.height, 'width': seg_img.width, | |
'id':image_id} | |
image_id += 1 | |
coco_ann['images'] += [image_coco_info] | |
this_img_classes = set(seg_label.reshape(-1).tolist()) | |
# print(this_img_classes) | |
for class_idx in this_img_classes: | |
if class_idx in ignore_classes_idx: | |
continue | |
if class_idx not in classes_imgs_id_map.keys(): | |
classes_imgs_id_map[class_idx] = 0 | |
mask = np.zeros((seg_label.shape[0], seg_label.shape[1]), dtype=np.uint8) | |
mask[seg_label == class_idx] = 1 | |
mask_without_small = morphology.remove_small_objects(mask, min_size=10, connectivity=2) | |
label_image = measure.label(mask_without_small) | |
for region in measure.regionprops(label_image): | |
bbox = region.bbox # (top, left, bottom, right) | |
bbox = [bbox[1], bbox[0], bbox[3], bbox[2]] # (left, top, right, bottom) | |
width, height = bbox[2] - bbox[0], bbox[3] - bbox[1] | |
if width < min_img_size or height < min_img_size: | |
continue | |
# target_cropped_img_path = os.path.join(target_cls_data_dir, str(class_idx), | |
# f'{classes_imgs_id_map[class_idx]}.{seg_img_path.split(".")[-1]}') | |
# ensure_dir(target_cropped_img_path) | |
# seg_img.crop(bbox).save(target_cropped_img_path) | |
# print(target_cropped_img_path) | |
# exit() | |
ann_coco_info = {'area': width*height, 'iscrowd': 0, 'image_id': | |
image_id - 1, 'bbox': [bbox[0], bbox[1], width, height], | |
'category_id': class_idx, | |
'id': ann_id, 'ignore': 0, | |
'segmentation': []} | |
ann_id += 1 | |
coco_ann['annotations'] += [ann_coco_info] | |
classes_imgs_id_map[class_idx] += 1 | |
pbar.set_description(f'# ann: {ann_id}') | |
coco_ann['categories'] = [ | |
{'id': ci, 'name': f'class_{c}_in_seg'} for ci, c in enumerate(classes_imgs_id_map.keys()) | |
] | |
c_to_ci_map = {c: ci for ci, c in enumerate(classes_imgs_id_map.keys())} | |
for ann in coco_ann['annotations']: | |
ann['category_id'] = c_to_ci_map[ | |
ann['category_id'] | |
] | |
write_json(target_coco_ann_path, coco_ann, indent=0, backup=True) | |
write_json(os.path.join(root_dir, 'coco_ann.json'), coco_ann, indent=0, backup=True) | |
num_cls_imgs = 0 | |
for k, v in classes_imgs_id_map.items(): | |
# print(f'# class {k}: {v + 1}') | |
num_cls_imgs += v | |
# print(f'total: {num_cls_imgs}') | |
return classes_imgs_id_map | |
from concurrent.futures import ThreadPoolExecutor | |
# def convert_seg_dataset_to_cls_multi_thread(seg_imgs_path, seg_labels_path, target_cls_data_dir, ignore_classes_idx, num_threads): | |
# if os.path.exists(target_cls_data_dir): | |
# shutil.rmtree(target_cls_data_dir) | |
# assert len(seg_imgs_path) == len(seg_labels_path) | |
# n = len(seg_imgs_path) // num_threads | |
# pool = ThreadPoolExecutor(max_workers=num_threads) | |
# # threads = [] | |
# futures = [] | |
# for thread_i in range(num_threads): | |
# # thread = threading.Thread(target=convert_seg_dataset_to_cls, | |
# # args=(seg_imgs_path[thread_i * n: (thread_i + 1) * n], | |
# # seg_labels_path[thread_i * n: (thread_i + 1) * n], | |
# # target_cls_data_dir, ignore_classes_idx)) | |
# # threads += [thread] | |
# future = pool.submit(convert_seg_dataset_to_cls, *(seg_imgs_path[thread_i * n: (thread_i + 1) * n], | |
# seg_labels_path[thread_i * n: (thread_i + 1) * n], | |
# target_cls_data_dir, ignore_classes_idx, thread_i)) | |
# futures += [future] | |
# futures += [ | |
# pool.submit(convert_seg_dataset_to_cls, *(seg_imgs_path[(thread_i + 1) * n: ], | |
# seg_labels_path[(thread_i + 1) * n: ], | |
# target_cls_data_dir, ignore_classes_idx, thread_i)) | |
# ] | |
# for f in futures: | |
# f.done() | |
# res = [] | |
# for f in futures: | |
# res += [f.result()] | |
# print(res[-1]) | |
# res_dist = {} | |
# for r in res: | |
# for k, v in r.items(): | |
# if k in res_dist.keys(): | |
# res_dist[k] += v | |
# else: | |
# res_dist[k] = v | |
# print('results:') | |
# print(res_dist) | |
# pool.shutdown() | |
# import random | |
# def random_crop_aug(target_dir): | |
# for class_dir in os.listdir(target_dir): | |
# class_dir = os.path.join(target_dir, class_dir) | |
# for img_path in os.listdir(class_dir): | |
# img_path = os.path.join(class_dir, img_path) | |
# img = Image.open(img_path) | |
# w, h = img.width, img.height | |
# for ri in range(5): | |
# img.crop( | |
# [ | |
# random.randint(0, w // 5), | |
# random.randint(0, h // 5), | |
# random.randint(w // 5 * 4, w), | |
# random.randint(h // 5 * 4, h) | |
# ] | |
# ).save( | |
# os.path.join(os.path.dirname(img_path), f'randaug_{ri}_' + os.path.basename(img_path)) | |
# ) | |
# # print(img_path) | |
# # exit() | |
def post_ignore_classes(coco_ann_json_path): | |
# from data.datasets.object_detection.yolox_data_util.api import remap_dataset | |
# remap_dataset(coco_ann_json_path, [], {}) | |
pass | |
if __name__ == '__main__': | |
# SuperviselyPerson | |
# root_dir = '/data/zql/datasets/supervisely_person_full_20230635/Supervisely Person Dataset' | |
# images_path, labels_path = [], [] | |
# for p in os.listdir(root_dir): | |
# if p.startswith('ds'): | |
# p1 = os.path.join(root_dir, p, 'img') | |
# images_path += [(p, os.path.join(p1, n)) for n in os.listdir(p1)] | |
# for dsi, img_p in images_path: | |
# target_p = os.path.join(root_dir, p, dsi, img_p.split('/')[-1]) | |
# labels_path += [target_p] | |
# images_path = [i[1] for i in images_path] | |
# target_coco_ann_path = '/data/zql/datasets/supervisely_person_for_det_task/coco_ann.json' | |
# if os.path.exists(target_coco_ann_path): | |
# os.remove(target_coco_ann_path) | |
# convert_seg_dataset_to_det( | |
# seg_imgs_path=images_path, | |
# seg_labels_path=labels_path, | |
# root_dir=root_dir, | |
# target_coco_ann_path=target_coco_ann_path, | |
# ignore_classes_idx=[0, 2], | |
# # num_threads=8 | |
# thread_i=0 | |
# ) | |
# random_crop_aug('/data/zql/datasets/supervisely_person_for_cls_task') | |
# GTA5 | |
# root_dir = '/data/zql/datasets/GTA-ls-copy/GTA5' | |
# images_path, labels_path = [], [] | |
# for p in os.listdir(os.path.join(root_dir, 'images')): | |
# p = os.path.join(root_dir, 'images', p) | |
# if not p.endswith('png'): | |
# continue | |
# images_path += [p] | |
# labels_path += [p.replace('images', 'labels_gt')] | |
# target_coco_ann_path = '/data/zql/datasets/gta5_for_det_task/coco_ann.json' | |
# if os.path.exists(target_coco_ann_path): | |
# os.remove(target_coco_ann_path) | |
# """ | |
# [ | |
# 'road', 'sidewalk', 'building', 'wall', | |
# 'fence', 'pole', 'light', 'sign', | |
# 'vegetation', 'terrain', 'sky', 'people', # person | |
# 'rider', 'car', 'truck', 'bus', 'train', | |
# 'motocycle', 'bicycle' | |
# ] | |
# """ | |
# need_classes_idx = [13, 15] | |
# convert_seg_dataset_to_det( | |
# seg_imgs_path=images_path, | |
# seg_labels_path=labels_path, | |
# root_dir=root_dir, | |
# target_coco_ann_path=target_coco_ann_path, | |
# ignore_classes_idx=[i for i in range(20) if i not in need_classes_idx], | |
# thread_i=0 | |
# ) | |
# from data.datasets.object_detection.yolox_data_util.api import remap_dataset | |
# new_coco_ann_json_path = remap_dataset('/data/zql/datasets/GTA-ls-copy/GTA5/coco_ann.json', [-1], {0: 0, 1:-1, 2:-1, 3: 1, 4:-1, 5:-1}) | |
# print(new_coco_ann_json_path) | |
# cityscapes | |
# root_dir = '/data/zql/datasets/cityscape/' | |
# def _get_target_suffix(mode: str, target_type: str) -> str: | |
# if target_type == 'instance': | |
# return '{}_instanceIds.png'.format(mode) | |
# elif target_type == 'semantic': | |
# return '{}_labelIds.png'.format(mode) | |
# elif target_type == 'color': | |
# return '{}_color.png'.format(mode) | |
# else: | |
# return '{}_polygons.json'.format(mode) | |
# images_path, labels_path = [], [] | |
# split = 'train' | |
# images_dir = os.path.join(root_dir, 'leftImg8bit', split) | |
# targets_dir = os.path.join(root_dir, 'gtFine', split) | |
# for city in os.listdir(images_dir): | |
# img_dir = os.path.join(images_dir, city) | |
# target_dir = os.path.join(targets_dir, city) | |
# for file_name in os.listdir(img_dir): | |
# target_types = [] | |
# for t in ['semantic']: | |
# target_name = '{}_{}'.format(file_name.split('_leftImg8bit')[0], | |
# _get_target_suffix('gtFine', t)) | |
# target_types.append(os.path.join(target_dir, target_name)) | |
# images_path.append(os.path.join(img_dir, file_name)) | |
# labels_path.append(target_types[0]) | |
# # print(images_path[0: 5], '\n', labels_path[0: 5]) | |
# target_coco_ann_path = '/data/zql/datasets/cityscape/coco_ann.json' | |
# # if os.path.exists(target_dir): | |
# # shutil.rmtree(target_dir) | |
# need_classes_idx = [26, 28] | |
# convert_seg_dataset_to_det( | |
# seg_imgs_path=images_path, | |
# seg_labels_path=labels_path, | |
# root_dir=root_dir, | |
# target_coco_ann_path=target_coco_ann_path, | |
# ignore_classes_idx=[i for i in range(80) if i not in need_classes_idx], | |
# # num_threads=8 | |
# thread_i=0 | |
# ) | |
# import shutil | |
# ignore_target_dir = '/data/zql/datasets/cityscapes_for_cls_task_ignored' | |
# ignore_label = 255 | |
# raw_idx_map_in_y_transform = {-1: ignore_label, 0: ignore_label, 1: ignore_label, 2: ignore_label, | |
# 3: ignore_label, 4: ignore_label, 5: ignore_label, 6: ignore_label, | |
# 7: 0, 8: 1, 9: ignore_label, 10: ignore_label, 11: 2, 12: 3, 13: 4, | |
# 14: ignore_label, 15: ignore_label, 16: ignore_label, 17: 5, | |
# 18: ignore_label, 19: 6, 20: 7, 21: 8, 22: 9, 23: 10, 24: 11, 25: 12, 26: 13, 27: 14, | |
# 28: 15, 29: ignore_label, 30: ignore_label, 31: 16, 32: 17, 33: 18} | |
# ignore_classes_idx = [k for k, v in raw_idx_map_in_y_transform.items() if v == ignore_label] | |
# ignore_classes_idx = sorted(ignore_classes_idx) | |
# for class_dir in os.listdir(target_dir): | |
# if int(class_dir) in ignore_classes_idx: | |
# continue | |
# shutil.move( | |
# os.path.join(target_dir, class_dir), | |
# os.path.join(ignore_target_dir, class_dir) | |
# ) | |
# else: | |
# shutil.move( | |
# os.path.join(target_dir, class_dir), | |
# os.path.join(target_dir, str(raw_idx_map_in_y_transform[int(class_dir)])) | |
# ) | |
# continue | |
# print(class_dir) | |
# exit() | |
# baidu person | |
# root_dir = '/data/zql/datasets/baidu_person/clean_images/' | |
# images_path, labels_path = [], [] | |
# for p in os.listdir(os.path.join(root_dir, 'images')): | |
# images_path += [os.path.join(root_dir, 'images', p)] | |
# labels_path += [os.path.join(root_dir, 'profiles', p.split('.')[0] + '-profile.jpg')] | |
# target_dir = '/data/zql/datasets/baiduperson_for_cls_task' | |
# # if os.path.exists(target_dir): | |
# # shutil.rmtree(target_dir) | |
# def label_after_hook(x): | |
# x[x > 1] = 1 | |
# return x | |
# convert_seg_dataset_to_det( | |
# seg_imgs_path=images_path, | |
# seg_labels_path=labels_path, | |
# root_dir=root_dir, | |
# target_coco_ann_path='/data/zql/datasets/baidu_person/clean_images/coco_ann_zql.json', | |
# ignore_classes_idx=[1], | |
# # num_threads=8 | |
# thread_i=1, | |
# min_img_size=224, | |
# label_after_hook=label_after_hook | |
# ) | |
# from data.visualize import visualize_classes_in_object_detection | |
# from data import get_dataset | |
# d = get_dataset('CityscapesDet', '/data/zql/datasets/cityscape/', 'val', None, [], None) | |
# visualize_classes_in_object_detection(d, {'car': 0, 'bus': 1}, {}, 'debug.png') | |
# d = get_dataset('GTA5Det', '/data/zql/datasets/GTA-ls-copy/GTA5', 'val', None, [], None) | |
# visualize_classes_in_object_detection(d, {'car': 0, 'bus': 1}, {}, 'debug.png') | |
# d = get_dataset('BaiduPersonDet', '/data/zql/datasets/baidu_person/clean_images/', 'val', None, [], None) | |
# visualize_classes_in_object_detection(d, {'person': 0}, {}, 'debug.png') |