File size: 7,010 Bytes
b84549f
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
import os
#bert_path should be the path of the roberta-base dir
os.environ['bert_path'] = '/data/zql/concept-drift-in-edge-projects/UniversalElasticNet/new_impl/nlp/roberta/sentiment-classification/roberta-base'

import torch
import sys
from torch import nn
from methods.elasticdnn.api.model import ElasticDNN_OfflineSenClsFMModel, ElasticDNN_OfflineSenClsMDModel
from methods.elasticdnn.api.algs.md_pretraining_wo_fbs import ElasticDNN_MDPretrainingWoFBSAlg
from methods.elasticdnn.model.base import ElasticDNNUtil
from methods.elasticdnn.pipeline.offline.fm_to_md.base import FM_to_MD_Util
from roberta import FMLoRA_Roberta_Util, RobertaForSenCls, FM_to_MD_Roberta_Util
from methods.elasticdnn.pipeline.offline.fm_lora.base import FMLoRA_Util
from utils.dl.common.model import LayerActivation2, get_module, get_parameter
from utils.common.exp import save_models_dict_for_init, get_res_save_dir
from data import build_scenario
from utils.dl.common.loss import CrossEntropyLossSoft
import torch.nn.functional as F
from utils.common.log import logger


class ElasticDNN_Roberta_OfflineSenClsFMModel(ElasticDNN_OfflineSenClsFMModel):
    def generate_md_by_reducing_width(self, reducing_width_ratio, samples: torch.Tensor): # TODO:
        tmp = FM_to_MD_Roberta_Util().init_md_from_fm_by_reducing_width_with_perf_test(self.models_dict['main'], 
                                                                        reducing_width_ratio, samples)
        return tmp
        # raise NotImplementedError

    def get_feature_hook(self) -> LayerActivation2:
        return LayerActivation2(get_module(self.models_dict['main'], 'classifier'))
    
    def get_elastic_dnn_util(self) -> ElasticDNNUtil: # TODO:
        return None
    
    def forward_to_get_task_loss(self, x, y, *args, **kwargs):
        self.to_train_mode()
        return F.cross_entropy(self.infer(x), y)
    
    def get_lora_util(self) -> FMLoRA_Util:
        return FMLoRA_Roberta_Util()
    
    def get_task_head_params(self):
        head = get_module(self.models_dict['main'], 'classifier')
        params_name = {k for k, v in head.named_parameters()}
        logger.info(f'task head params: {params_name}')
        return list(head.parameters())
        
        
class ElasticDNN_Roberta_OfflineSenClsMDModel(ElasticDNN_OfflineSenClsMDModel):
    def __init__(self, name: str, models_dict_path: str, device: str):
        super().__init__(name, models_dict_path, device)
        
        self.distill_criterion = CrossEntropyLossSoft()
        
    def get_feature_hook(self) -> LayerActivation2:
        return LayerActivation2(get_module(self.models_dict['main'], 'classifier'))
    
    def forward_to_get_task_loss(self, x, y, *args, **kwargs):
        self.to_train_mode()
        return F.cross_entropy(self.infer(x), y)
    
    def get_distill_loss(self, student_output, teacher_output):
        # print(student_output, teacher_output)
        return self.distill_criterion(student_output, teacher_output)
    
    def get_matched_param_of_fm(self, self_param_name, fm: nn.Module): # TODO:
        if any([k in self_param_name for k in ['fbs', 'embeddings']]):
            return None
        
        # 1. xx.qkv.to_qkv.yy to xx.qkv.qkv.aa and xx.qkv.abs.zz
        if 'query' in self_param_name or 'key' in self_param_name or 'value' in self_param_name:
            ss = self_param_name.split('.')
            raise NotImplementedError() # TODO:
            fm_qkv_name = '.'.join(ss[0: -2]) + '.qkv'
            fm_qkv = get_module(fm, fm_qkv_name)
            
            fm_abs_name = '.'.join(ss[0: -2]) + '.abs'
            fm_abs = get_module(fm, fm_abs_name)
            
            return torch.cat([
                fm_qkv.weight.data, # task-agnositc params
                torch.cat([(_abs[0].weight.T @ _abs[1].weight.T).T for _abs in fm_abs], dim=0) # task-specific params (LoRA)
            ], dim=0)
            
        elif 'to_qkv.bias' in self_param_name:
            ss = self_param_name.split('.')
            
            fm_qkv_name = '.'.join(ss[0: -2]) + '.qkv.bias'
            return get_parameter(fm, fm_qkv_name)
            
        elif 'mlp.fc1' in self_param_name:
            fm_param_name = self_param_name.replace('.linear', '')
            return get_parameter(fm, fm_param_name)

        else:
            return get_parameter(fm, self_param_name)
        
        
if __name__ == '__main__':
    from utils.dl.common.env import set_random_seed
    set_random_seed(1)
    
    # 3. init scenario
    scenario = build_scenario(
        source_datasets_name=['HL5Domains-ApexAD2600Progressive', 'HL5Domains-CanonG3', 'HL5Domains-CreativeLabsNomadJukeboxZenXtra40GB'],
        target_datasets_order=['HL5Domains-Nokia6610', 'HL5Domains-NikonCoolpix4300'] * 1, # TODO
        da_mode='close_set',
        data_dirs={
            **{k: f'/data/zql/datasets/nlp_asc_19_domains/dat/absa/Bing5Domains/asc/{k.split("-")[1]}' 
             for k in ['HL5Domains-ApexAD2600Progressive', 'HL5Domains-CanonG3', 'HL5Domains-CreativeLabsNomadJukeboxZenXtra40GB',
                              'HL5Domains-NikonCoolpix4300', 'HL5Domains-Nokia6610']}
        },
    )
    
    # 1. init model
    
    fm_models_dict_path = 'new_impl/nlp/roberta/sentiment-classification/results/cls_lora.py/20240105/999999-182730-results/models/fm_best.pt'
    fm_models = torch.load(fm_models_dict_path)
    fm_models_dict_path = save_models_dict_for_init(fm_models, __file__, 'fm_roberta_sen_cls_lora')
    md_models_dict_path = save_models_dict_for_init({
        'main': -1
    }, __file__, 'md_roberta_none')
    device = 'cuda'
    
    fm_model = ElasticDNN_Roberta_OfflineSenClsFMModel('fm', fm_models_dict_path, device)
    md_model = ElasticDNN_Roberta_OfflineSenClsMDModel('md', md_models_dict_path, device)
    
    # 2. init alg
    models = {
        'fm': fm_model,
        'md': md_model
    }
    fm_to_md_alg = ElasticDNN_MDPretrainingWoFBSAlg(models, get_res_save_dir(__file__, None))
    
    from utils.dl.common.lr_scheduler import get_linear_schedule_with_warmup
    fm_to_md_alg.run(scenario, hyps={
        'launch_tbboard': False,
        
        'samples_size': {'input_ids': torch.tensor([[ 101, 5672, 2033, 2011, 2151, 3793, 2017, 1005, 1040, 2066, 1012,  102]]).to(device), 
                                  'token_type_ids': torch.tensor([[0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0]]).to(device), 
                                  'attention_mask': torch.tensor([[1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1]]).to(device), 'return_dict': False},
        'generate_md_width_ratio': 8,
        
        'train_batch_size': 32,
        'val_batch_size': 128,
        'num_workers': 32,
        'optimizer': 'AdamW',
        'optimizer_args': {'lr': 1e-4, 'betas': [0.9, 0.999]},
        'scheduler': 'LambdaLR',
        'scheduler_args': {'lr_lambda': get_linear_schedule_with_warmup(10000, 70000)},
        'num_iters': 70000,
        'val_freq': 1000,
        'distill_loss_weight': 1.0
    })