File size: 7,836 Bytes
b84549f
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
#!/usr/bin/env python3
# -*- coding:utf-8 -*-
# This file mainly comes from
# https://github.com/facebookresearch/detectron2/blob/master/detectron2/utils/comm.py
# Copyright (c) Facebook, Inc. and its affiliates.
# Copyright (c) Megvii Inc. All rights reserved.
"""
This file contains primitives for multi-gpu communication.
This is useful when doing distributed training.
"""

import functools
import os
import pickle
import time
from contextlib import contextmanager
from loguru import logger

import numpy as np

import torch
from torch import distributed as dist

__all__ = [
    "get_num_devices",
    "wait_for_the_master",
    "is_main_process",
    "synchronize",
    "get_world_size",
    "get_rank",
    "get_local_rank",
    "get_local_size",
    "time_synchronized",
    "gather",
    "all_gather",
]

_LOCAL_PROCESS_GROUP = None


def get_num_devices():
    gpu_list = os.getenv('CUDA_VISIBLE_DEVICES', None)
    if gpu_list is not None:
        return len(gpu_list.split(','))
    else:
        devices_list_info = os.popen("nvidia-smi -L")
        devices_list_info = devices_list_info.read().strip().split("\n")
        return len(devices_list_info)


@contextmanager
def wait_for_the_master(local_rank: int):
    """
    Make all processes waiting for the master to do some task.
    """
    if local_rank > 0:
        dist.barrier()
    yield
    if local_rank == 0:
        if not dist.is_available():
            return
        if not dist.is_initialized():
            return
        else:
            dist.barrier()


def synchronize():
    """
    Helper function to synchronize (barrier) among all processes when using distributed training
    """
    if not dist.is_available():
        return
    if not dist.is_initialized():
        return
    world_size = dist.get_world_size()
    if world_size == 1:
        return
    dist.barrier()


def get_world_size() -> int:
    if not dist.is_available():
        return 1
    if not dist.is_initialized():
        return 1
    return dist.get_world_size()


def get_rank() -> int:
    if not dist.is_available():
        return 0
    if not dist.is_initialized():
        return 0
    return dist.get_rank()


def get_local_rank() -> int:
    """
    Returns:
        The rank of the current process within the local (per-machine) process group.
    """
    if _LOCAL_PROCESS_GROUP is None:
        return get_rank()

    if not dist.is_available():
        return 0
    if not dist.is_initialized():
        return 0
    return dist.get_rank(group=_LOCAL_PROCESS_GROUP)


def get_local_size() -> int:
    """
    Returns:
        The size of the per-machine process group, i.e. the number of processes per machine.
    """
    if not dist.is_available():
        return 1
    if not dist.is_initialized():
        return 1
    return dist.get_world_size(group=_LOCAL_PROCESS_GROUP)


def is_main_process() -> bool:
    return get_rank() == 0


@functools.lru_cache()
def _get_global_gloo_group():
    """
    Return a process group based on gloo backend, containing all the ranks
    The result is cached.
    """
    if dist.get_backend() == "nccl":
        return dist.new_group(backend="gloo")
    else:
        return dist.group.WORLD


def _serialize_to_tensor(data, group):
    backend = dist.get_backend(group)
    assert backend in ["gloo", "nccl"]
    device = torch.device("cpu" if backend == "gloo" else "cuda")

    buffer = pickle.dumps(data)
    if len(buffer) > 1024 ** 3:
        logger.warning(
            "Rank {} trying to all-gather {:.2f} GB of data on device {}".format(
                get_rank(), len(buffer) / (1024 ** 3), device
            )
        )
    storage = torch.ByteStorage.from_buffer(buffer)
    tensor = torch.ByteTensor(storage).to(device=device)
    return tensor


def _pad_to_largest_tensor(tensor, group):
    """
    Returns:
        list[int]: size of the tensor, on each rank
        Tensor: padded tensor that has the max size
    """
    world_size = dist.get_world_size(group=group)
    assert (
        world_size >= 1
    ), "comm.gather/all_gather must be called from ranks within the given group!"
    local_size = torch.tensor([tensor.numel()], dtype=torch.int64, device=tensor.device)
    size_list = [
        torch.zeros([1], dtype=torch.int64, device=tensor.device)
        for _ in range(world_size)
    ]
    dist.all_gather(size_list, local_size, group=group)
    size_list = [int(size.item()) for size in size_list]

    max_size = max(size_list)

    # we pad the tensor because torch all_gather does not support
    # gathering tensors of different shapes
    if local_size != max_size:
        padding = torch.zeros(
            (max_size - local_size,), dtype=torch.uint8, device=tensor.device
        )
        tensor = torch.cat((tensor, padding), dim=0)
    return size_list, tensor


def all_gather(data, group=None):
    """
    Run all_gather on arbitrary picklable data (not necessarily tensors).

    Args:
        data: any picklable object
        group: a torch process group. By default, will use a group which
            contains all ranks on gloo backend.
    Returns:
        list[data]: list of data gathered from each rank
    """
    if get_world_size() == 1:
        return [data]
    if group is None:
        group = _get_global_gloo_group()
    if dist.get_world_size(group) == 1:
        return [data]

    tensor = _serialize_to_tensor(data, group)

    size_list, tensor = _pad_to_largest_tensor(tensor, group)
    max_size = max(size_list)

    # receiving Tensor from all ranks
    tensor_list = [
        torch.empty((max_size,), dtype=torch.uint8, device=tensor.device)
        for _ in size_list
    ]
    dist.all_gather(tensor_list, tensor, group=group)

    data_list = []
    for size, tensor in zip(size_list, tensor_list):
        buffer = tensor.cpu().numpy().tobytes()[:size]
        data_list.append(pickle.loads(buffer))

    return data_list


def gather(data, dst=0, group=None):
    """
    Run gather on arbitrary picklable data (not necessarily tensors).

    Args:
        data: any picklable object
        dst (int): destination rank
        group: a torch process group. By default, will use a group which
            contains all ranks on gloo backend.

    Returns:
        list[data]: on dst, a list of data gathered from each rank. Otherwise,
            an empty list.
    """
    if get_world_size() == 1:
        return [data]
    if group is None:
        group = _get_global_gloo_group()
    if dist.get_world_size(group=group) == 1:
        return [data]
    rank = dist.get_rank(group=group)

    tensor = _serialize_to_tensor(data, group)
    size_list, tensor = _pad_to_largest_tensor(tensor, group)

    # receiving Tensor from all ranks
    if rank == dst:
        max_size = max(size_list)
        tensor_list = [
            torch.empty((max_size,), dtype=torch.uint8, device=tensor.device)
            for _ in size_list
        ]
        dist.gather(tensor, tensor_list, dst=dst, group=group)

        data_list = []
        for size, tensor in zip(size_list, tensor_list):
            buffer = tensor.cpu().numpy().tobytes()[:size]
            data_list.append(pickle.loads(buffer))
        return data_list
    else:
        dist.gather(tensor, [], dst=dst, group=group)
        return []


def shared_random_seed():
    """
    Returns:
        int: a random number that is the same across all workers.
            If workers need a shared RNG, they can use this shared seed to
            create one.
    All workers must call this function, otherwise it will deadlock.
    """
    ints = np.random.randint(2 ** 31)
    all_ints = all_gather(ints)
    return all_ints[0]


def time_synchronized():
    """pytorch-accurate time"""
    if torch.cuda.is_available():
        torch.cuda.synchronize()
    return time.time()