File size: 13,689 Bytes
b84549f
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
#!/usr/bin/env python3
# -*- coding:utf-8 -*-
# Copyright (c) Megvii, Inc. and its affiliates.

import contextlib
import io
import itertools
import json
import tempfile
import time
from loguru import logger
from tabulate import tabulate
from tqdm import tqdm

import numpy as np

import torch

# from core.common.dnn.detection.yolox.yolox.data.datasets import COCO_CLASSES
from .utils import (
    gather,
    is_main_process,
    postprocess,
    synchronize,
    time_synchronized,
    xyxy2xywh
)
# from core.common.dnn.detection.yolox.yolox.layers import COCOeval_opt as COCOeval


def per_class_AR_table(coco_eval, class_names, headers=["class", "AR"], colums=6):
    per_class_AR = {}
    recalls = coco_eval.eval["recall"]
    # dimension of recalls: [TxKxAxM]
    # recall has dims (iou, cls, area range, max dets)
    assert len(class_names) == recalls.shape[1]

    for idx, name in enumerate(class_names):
        recall = recalls[:, idx, 0, -1]
        recall = recall[recall > -1]
        ar = np.mean(recall) if recall.size else float("nan")
        per_class_AR[name] = float(ar * 100)

    num_cols = min(colums, len(per_class_AR) * len(headers))
    result_pair = [x for pair in per_class_AR.items() for x in pair]
    row_pair = itertools.zip_longest(*[result_pair[i::num_cols] for i in range(num_cols)])
    table_headers = headers * (num_cols // len(headers))
    table = tabulate(
        row_pair, tablefmt="pipe", floatfmt=".3f", headers=table_headers, numalign="left",
    )
    return table


def per_class_AP_table(coco_eval, class_names, headers=["class", "AP"], colums=6):
    per_class_AP = {}
    precisions = coco_eval.eval["precision"]
    # dimension of precisions: [TxRxKxAxM]
    # precision has dims (iou, recall, cls, area range, max dets)
    assert len(class_names) == precisions.shape[2]

    for idx, name in enumerate(class_names):
        # area range index 0: all area ranges
        # max dets index -1: typically 100 per image
        precision = precisions[:, :, idx, 0, -1]
        precision = precision[precision > -1]
        ap = np.mean(precision) if precision.size else float("nan")
        per_class_AP[name] = float(ap * 100)

    num_cols = min(colums, len(per_class_AP) * len(headers))
    result_pair = [x for pair in per_class_AP.items() for x in pair]
    row_pair = itertools.zip_longest(*[result_pair[i::num_cols] for i in range(num_cols)])
    table_headers = headers * (num_cols // len(headers))
    table = tabulate(
        row_pair, tablefmt="pipe", floatfmt=".3f", headers=table_headers, numalign="left",
    )
    return table


class COCOEvaluator:
    """
    COCO AP Evaluation class.  All the data in the val2017 dataset are processed
    and evaluated by COCO API.
    """

    def __init__(
        self,
        dataloader,
        img_size: int,
        confthre: float,
        nmsthre: float,
        num_classes: int,
        testdev: bool = False,
        per_class_AP: bool = False,
        per_class_AR: bool = False,
    ):
        """
        Args:
            dataloader (Dataloader): evaluate dataloader.
            img_size: image size after preprocess. images are resized
                to squares whose shape is (img_size, img_size).
            confthre: confidence threshold ranging from 0 to 1, which
                is defined in the config file.
            nmsthre: IoU threshold of non-max supression ranging from 0 to 1.
            per_class_AP: Show per class AP during evalution or not. Default to False.
            per_class_AR: Show per class AR during evalution or not. Default to False.
        """
        self.dataloader = dataloader
        self.img_size = img_size
        self.confthre = confthre
        self.nmsthre = nmsthre
        self.num_classes = num_classes
        self.testdev = testdev
        self.per_class_AP = per_class_AP
        self.per_class_AR = per_class_AR

    def evaluate(
        self,
        model,
        distributed=False,
        half=False,
        trt_file=None,
        decoder=None,
        test_size=None,
    ):
        """
        COCO average precision (AP) Evaluation. Iterate inference on the test dataset
        and the results are evaluated by COCO API.

        NOTE: This function will change training mode to False, please save states if needed.

        Args:
            model : model to evaluate.

        Returns:
            ap50_95 (float) : COCO AP of IoU=50:95
            ap50 (float) : COCO AP of IoU=50
            summary (sr): summary info of evaluation.
        """
        # TODO half to amp_test
        tensor_type = torch.cuda.HalfTensor if half else torch.cuda.FloatTensor
        model = model.eval()
        if half:
            model = model.half()
        ids = []
        data_list = []
        progress_bar = iter if is_main_process() else iter

        inference_time = 0
        nms_time = 0
        n_samples = max(len(self.dataloader) - 1, 1)

        if trt_file is not None:
            from torch2trt import TRTModule

            model_trt = TRTModule()
            model_trt.load_state_dict(torch.load(trt_file))

            x = torch.ones(1, 3, test_size[0], test_size[1]).cuda()
            model(x)
            model = model_trt

        import tqdm
        for cur_iter, (imgs, _, info_imgs, ids) in tqdm.tqdm(enumerate(
            progress_bar(self.dataloader)
        ), dynamic_ncols=True, leave=False, total=len(self.dataloader)):
            with torch.no_grad():
                imgs = imgs.type(tensor_type)

                # skip the the last iters since batchsize might be not enough for batch inference
                is_time_record = cur_iter < len(self.dataloader) - 1
                if is_time_record:
                    start = time.time()

                outputs = model(imgs)
                if decoder is not None:
                    outputs = decoder(outputs, dtype=outputs.type())

                if is_time_record:
                    infer_end = time_synchronized()
                    inference_time += infer_end - start

                outputs = postprocess(
                    outputs, self.num_classes, self.confthre, self.nmsthre
                )
                if is_time_record:
                    nms_end = time_synchronized()
                    nms_time += nms_end - infer_end

            data_list.extend(self.convert_to_coco_format(outputs, info_imgs, ids, imgs))

        statistics = torch.cuda.FloatTensor([inference_time, nms_time, n_samples])
        if distributed:
            data_list = gather(data_list, dst=0)
            data_list = list(itertools.chain(*data_list))
            torch.distributed.reduce(statistics, dst=0)

        eval_results = self.evaluate_prediction(data_list, statistics)
        synchronize()
        return eval_results

    def convert_to_coco_format(self, outputs, info_imgs, ids, input_imgs=None):
        data_list = []
        img_i = 0
        for (output, img_h, img_w, img_id, img) in zip(
            outputs, info_imgs[0], info_imgs[1], ids, input_imgs
        ):
            if output is None:
                continue
            output = output.cpu()

            bboxes = output[:, 0:4]

            # preprocessing: resize
            scale = min(
                self.img_size[0] / float(img_h), self.img_size[1] / float(img_w)
            )
            bboxes /= scale
            bboxes = xyxy2xywh(bboxes)

            cls = output[:, 6]
            scores = output[:, 4] * output[:, 5]
            for ind in range(bboxes.shape[0]):
                # print(self.dataloader.dataset.class_ids, cls[ind])
                # implemented by queyu, 2022/08/08
                _d = self.dataloader.dataset
                if _d.__class__.__name__ == 'MergedDataset':
                    # _d = _d.datasets[0]
                    raise NotImplementedError
                from data import ABDataset
                if _d.__class__.__name__ == '_AugWrapperForDataset':
                    _d = _d.raw_dataset
                if isinstance(_d, ABDataset):
                    _d = _d.dataset
                if _d.__class__.__name__ == '_SplitDataset':
                    raise NotImplementedError
                    _d = _d.underlying_dataset
                
                class_ids = _d.class_ids 
                if int(cls[ind]) >= len(class_ids):
                    raise RuntimeError
                    label = self.dataloader.dataset.class_ids[-1]
                else:
                    label = class_ids[int(cls[ind])]
                pred_data = {
                    "image_id": int(img_id),
                    "category_id": label,
                    "bbox": bboxes[ind].numpy().tolist(),
                    "score": scores[ind].numpy().item(),
                    "segmentation": [],
                }  # COCO json format
                data_list.append(pred_data)

                # TODO: debug
                # img = input_imgs[ind]

                
        #         from torchvision.transforms import ToTensor, ToPILImage
        #         from torchvision.utils import make_grid
        #         from PIL import Image, ImageDraw
        #         import matplotlib.pyplot as plt
        #         import numpy as np
        #         def draw_bbox(img, bbox, label, f):
        #             # if f:
        #             #     img = np.uint8(img.permute(1, 2, 0))
        #             # img = Image.fromarray(img)
        #             img = ToPILImage()(img)
        #             draw = ImageDraw.Draw(img)
        #             draw.rectangle(bbox, outline=(255, 0, 0), width=6)
        #             draw.text((bbox[0], bbox[1]), label)
        #             return ToTensor()(np.array(img))

        #         def xywh2xyxy(bbox):
        #             x, y, w, h = bbox 
        #             x1, y1 = x, y 
        #             x2, y2 = x + w, y + h 
        #             return x1, y1, x2, y2 
                
        #         img = draw_bbox(img, xywh2xyxy(bboxes[ind].numpy()), str(label), True)

        #     img = make_grid([img], 1, normalize=True)
        #     plt.axis('off')
        #     img = img.permute(1, 2, 0).numpy()
        #     plt.imshow(img)
        #     plt.savefig(f'./tmp-coco-eval-{ind}.png')
        #     plt.clf()
        #     img_i += 1

        # exit(0)
        return data_list

    def evaluate_prediction(self, data_dict, statistics):
        if not is_main_process():
            return 0, 0, None

        # logger.info("Evaluate in main process...")

        annType = ["segm", "bbox", "keypoints"]

        inference_time = statistics[0].item()
        nms_time = statistics[1].item()
        n_samples = statistics[2].item()

        a_infer_time = 1000 * inference_time / (n_samples * self.dataloader.batch_size)
        a_nms_time = 1000 * nms_time / (n_samples * self.dataloader.batch_size)

        time_info = ", ".join(
            [
                "Average {} time: {:.2f} ms".format(k, v)
                for k, v in zip(
                    ["forward", "NMS", "inference"],
                    [a_infer_time, a_nms_time, (a_infer_time + a_nms_time)],
                )
            ]
        )

        info = time_info + "\n"

        # Evaluate the Dt (detection) json comparing with the ground truth
        if len(data_dict) > 0:
            # cocoGt = self.dataloader.dataset.coco
            _d = self.dataloader.dataset
            if _d.__class__.__name__ == 'MergedDataset':
                # _d = _d.datasets[0]
                raise NotImplementedError
            from data import ABDataset
            if _d.__class__.__name__ == '_AugWrapperForDataset':
                _d = _d.raw_dataset
            if isinstance(_d, ABDataset):
                _d = _d.dataset
            if _d.__class__.__name__ == '_SplitDataset':
                raise NotImplementedError
                _d = _d.underlying_dataset
            
            cocoGt = _d.coco
            
            # implemented by queyu, 2022/08/08
            # make cocoGt's label += y_offset
            # cocoGt: COCOAPI
            
            # TODO: since pycocotools can't process dict in py36, write data to json file.
            if self.testdev:
                json.dump(data_dict, open("./yolox_testdev_2017.json", "w"))
                cocoDt = cocoGt.loadRes("./yolox_testdev_2017.json")
            else:
                _, tmp = tempfile.mkstemp()
                json.dump(data_dict, open(tmp, "w"))
                cocoDt = cocoGt.loadRes(tmp)
            # try:
            #     from core.common.dnn.detection.yolox.yolox.layers import COCOeval_opt as COCOeval
            # except ImportError:
            from pycocotools.cocoeval import COCOeval

            logger.warning("Use standard COCOeval.")

            cocoEval = COCOeval(cocoGt, cocoDt, annType[1])
            cocoEval.evaluate()
            cocoEval.accumulate()
            redirect_string = io.StringIO()
            with contextlib.redirect_stdout(redirect_string):
                cocoEval.summarize()
            info += redirect_string.getvalue()
            cat_ids = list(cocoGt.cats.keys())
            cat_names = [cocoGt.cats[catId]['name'] for catId in sorted(cat_ids)]
            if self.per_class_AP:
                AP_table = per_class_AP_table(cocoEval, class_names=cat_names)
                info += "per class AP:\n" + AP_table + "\n"
            if self.per_class_AR:
                AR_table = per_class_AR_table(cocoEval, class_names=cat_names)
                info += "per class AR:\n" + AR_table + "\n"
            return cocoEval.stats[0], cocoEval.stats[1], info
        else:
            return 0, 0, info