File size: 13,689 Bytes
b84549f |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 |
#!/usr/bin/env python3
# -*- coding:utf-8 -*-
# Copyright (c) Megvii, Inc. and its affiliates.
import contextlib
import io
import itertools
import json
import tempfile
import time
from loguru import logger
from tabulate import tabulate
from tqdm import tqdm
import numpy as np
import torch
# from core.common.dnn.detection.yolox.yolox.data.datasets import COCO_CLASSES
from .utils import (
gather,
is_main_process,
postprocess,
synchronize,
time_synchronized,
xyxy2xywh
)
# from core.common.dnn.detection.yolox.yolox.layers import COCOeval_opt as COCOeval
def per_class_AR_table(coco_eval, class_names, headers=["class", "AR"], colums=6):
per_class_AR = {}
recalls = coco_eval.eval["recall"]
# dimension of recalls: [TxKxAxM]
# recall has dims (iou, cls, area range, max dets)
assert len(class_names) == recalls.shape[1]
for idx, name in enumerate(class_names):
recall = recalls[:, idx, 0, -1]
recall = recall[recall > -1]
ar = np.mean(recall) if recall.size else float("nan")
per_class_AR[name] = float(ar * 100)
num_cols = min(colums, len(per_class_AR) * len(headers))
result_pair = [x for pair in per_class_AR.items() for x in pair]
row_pair = itertools.zip_longest(*[result_pair[i::num_cols] for i in range(num_cols)])
table_headers = headers * (num_cols // len(headers))
table = tabulate(
row_pair, tablefmt="pipe", floatfmt=".3f", headers=table_headers, numalign="left",
)
return table
def per_class_AP_table(coco_eval, class_names, headers=["class", "AP"], colums=6):
per_class_AP = {}
precisions = coco_eval.eval["precision"]
# dimension of precisions: [TxRxKxAxM]
# precision has dims (iou, recall, cls, area range, max dets)
assert len(class_names) == precisions.shape[2]
for idx, name in enumerate(class_names):
# area range index 0: all area ranges
# max dets index -1: typically 100 per image
precision = precisions[:, :, idx, 0, -1]
precision = precision[precision > -1]
ap = np.mean(precision) if precision.size else float("nan")
per_class_AP[name] = float(ap * 100)
num_cols = min(colums, len(per_class_AP) * len(headers))
result_pair = [x for pair in per_class_AP.items() for x in pair]
row_pair = itertools.zip_longest(*[result_pair[i::num_cols] for i in range(num_cols)])
table_headers = headers * (num_cols // len(headers))
table = tabulate(
row_pair, tablefmt="pipe", floatfmt=".3f", headers=table_headers, numalign="left",
)
return table
class COCOEvaluator:
"""
COCO AP Evaluation class. All the data in the val2017 dataset are processed
and evaluated by COCO API.
"""
def __init__(
self,
dataloader,
img_size: int,
confthre: float,
nmsthre: float,
num_classes: int,
testdev: bool = False,
per_class_AP: bool = False,
per_class_AR: bool = False,
):
"""
Args:
dataloader (Dataloader): evaluate dataloader.
img_size: image size after preprocess. images are resized
to squares whose shape is (img_size, img_size).
confthre: confidence threshold ranging from 0 to 1, which
is defined in the config file.
nmsthre: IoU threshold of non-max supression ranging from 0 to 1.
per_class_AP: Show per class AP during evalution or not. Default to False.
per_class_AR: Show per class AR during evalution or not. Default to False.
"""
self.dataloader = dataloader
self.img_size = img_size
self.confthre = confthre
self.nmsthre = nmsthre
self.num_classes = num_classes
self.testdev = testdev
self.per_class_AP = per_class_AP
self.per_class_AR = per_class_AR
def evaluate(
self,
model,
distributed=False,
half=False,
trt_file=None,
decoder=None,
test_size=None,
):
"""
COCO average precision (AP) Evaluation. Iterate inference on the test dataset
and the results are evaluated by COCO API.
NOTE: This function will change training mode to False, please save states if needed.
Args:
model : model to evaluate.
Returns:
ap50_95 (float) : COCO AP of IoU=50:95
ap50 (float) : COCO AP of IoU=50
summary (sr): summary info of evaluation.
"""
# TODO half to amp_test
tensor_type = torch.cuda.HalfTensor if half else torch.cuda.FloatTensor
model = model.eval()
if half:
model = model.half()
ids = []
data_list = []
progress_bar = iter if is_main_process() else iter
inference_time = 0
nms_time = 0
n_samples = max(len(self.dataloader) - 1, 1)
if trt_file is not None:
from torch2trt import TRTModule
model_trt = TRTModule()
model_trt.load_state_dict(torch.load(trt_file))
x = torch.ones(1, 3, test_size[0], test_size[1]).cuda()
model(x)
model = model_trt
import tqdm
for cur_iter, (imgs, _, info_imgs, ids) in tqdm.tqdm(enumerate(
progress_bar(self.dataloader)
), dynamic_ncols=True, leave=False, total=len(self.dataloader)):
with torch.no_grad():
imgs = imgs.type(tensor_type)
# skip the the last iters since batchsize might be not enough for batch inference
is_time_record = cur_iter < len(self.dataloader) - 1
if is_time_record:
start = time.time()
outputs = model(imgs)
if decoder is not None:
outputs = decoder(outputs, dtype=outputs.type())
if is_time_record:
infer_end = time_synchronized()
inference_time += infer_end - start
outputs = postprocess(
outputs, self.num_classes, self.confthre, self.nmsthre
)
if is_time_record:
nms_end = time_synchronized()
nms_time += nms_end - infer_end
data_list.extend(self.convert_to_coco_format(outputs, info_imgs, ids, imgs))
statistics = torch.cuda.FloatTensor([inference_time, nms_time, n_samples])
if distributed:
data_list = gather(data_list, dst=0)
data_list = list(itertools.chain(*data_list))
torch.distributed.reduce(statistics, dst=0)
eval_results = self.evaluate_prediction(data_list, statistics)
synchronize()
return eval_results
def convert_to_coco_format(self, outputs, info_imgs, ids, input_imgs=None):
data_list = []
img_i = 0
for (output, img_h, img_w, img_id, img) in zip(
outputs, info_imgs[0], info_imgs[1], ids, input_imgs
):
if output is None:
continue
output = output.cpu()
bboxes = output[:, 0:4]
# preprocessing: resize
scale = min(
self.img_size[0] / float(img_h), self.img_size[1] / float(img_w)
)
bboxes /= scale
bboxes = xyxy2xywh(bboxes)
cls = output[:, 6]
scores = output[:, 4] * output[:, 5]
for ind in range(bboxes.shape[0]):
# print(self.dataloader.dataset.class_ids, cls[ind])
# implemented by queyu, 2022/08/08
_d = self.dataloader.dataset
if _d.__class__.__name__ == 'MergedDataset':
# _d = _d.datasets[0]
raise NotImplementedError
from data import ABDataset
if _d.__class__.__name__ == '_AugWrapperForDataset':
_d = _d.raw_dataset
if isinstance(_d, ABDataset):
_d = _d.dataset
if _d.__class__.__name__ == '_SplitDataset':
raise NotImplementedError
_d = _d.underlying_dataset
class_ids = _d.class_ids
if int(cls[ind]) >= len(class_ids):
raise RuntimeError
label = self.dataloader.dataset.class_ids[-1]
else:
label = class_ids[int(cls[ind])]
pred_data = {
"image_id": int(img_id),
"category_id": label,
"bbox": bboxes[ind].numpy().tolist(),
"score": scores[ind].numpy().item(),
"segmentation": [],
} # COCO json format
data_list.append(pred_data)
# TODO: debug
# img = input_imgs[ind]
# from torchvision.transforms import ToTensor, ToPILImage
# from torchvision.utils import make_grid
# from PIL import Image, ImageDraw
# import matplotlib.pyplot as plt
# import numpy as np
# def draw_bbox(img, bbox, label, f):
# # if f:
# # img = np.uint8(img.permute(1, 2, 0))
# # img = Image.fromarray(img)
# img = ToPILImage()(img)
# draw = ImageDraw.Draw(img)
# draw.rectangle(bbox, outline=(255, 0, 0), width=6)
# draw.text((bbox[0], bbox[1]), label)
# return ToTensor()(np.array(img))
# def xywh2xyxy(bbox):
# x, y, w, h = bbox
# x1, y1 = x, y
# x2, y2 = x + w, y + h
# return x1, y1, x2, y2
# img = draw_bbox(img, xywh2xyxy(bboxes[ind].numpy()), str(label), True)
# img = make_grid([img], 1, normalize=True)
# plt.axis('off')
# img = img.permute(1, 2, 0).numpy()
# plt.imshow(img)
# plt.savefig(f'./tmp-coco-eval-{ind}.png')
# plt.clf()
# img_i += 1
# exit(0)
return data_list
def evaluate_prediction(self, data_dict, statistics):
if not is_main_process():
return 0, 0, None
# logger.info("Evaluate in main process...")
annType = ["segm", "bbox", "keypoints"]
inference_time = statistics[0].item()
nms_time = statistics[1].item()
n_samples = statistics[2].item()
a_infer_time = 1000 * inference_time / (n_samples * self.dataloader.batch_size)
a_nms_time = 1000 * nms_time / (n_samples * self.dataloader.batch_size)
time_info = ", ".join(
[
"Average {} time: {:.2f} ms".format(k, v)
for k, v in zip(
["forward", "NMS", "inference"],
[a_infer_time, a_nms_time, (a_infer_time + a_nms_time)],
)
]
)
info = time_info + "\n"
# Evaluate the Dt (detection) json comparing with the ground truth
if len(data_dict) > 0:
# cocoGt = self.dataloader.dataset.coco
_d = self.dataloader.dataset
if _d.__class__.__name__ == 'MergedDataset':
# _d = _d.datasets[0]
raise NotImplementedError
from data import ABDataset
if _d.__class__.__name__ == '_AugWrapperForDataset':
_d = _d.raw_dataset
if isinstance(_d, ABDataset):
_d = _d.dataset
if _d.__class__.__name__ == '_SplitDataset':
raise NotImplementedError
_d = _d.underlying_dataset
cocoGt = _d.coco
# implemented by queyu, 2022/08/08
# make cocoGt's label += y_offset
# cocoGt: COCOAPI
# TODO: since pycocotools can't process dict in py36, write data to json file.
if self.testdev:
json.dump(data_dict, open("./yolox_testdev_2017.json", "w"))
cocoDt = cocoGt.loadRes("./yolox_testdev_2017.json")
else:
_, tmp = tempfile.mkstemp()
json.dump(data_dict, open(tmp, "w"))
cocoDt = cocoGt.loadRes(tmp)
# try:
# from core.common.dnn.detection.yolox.yolox.layers import COCOeval_opt as COCOeval
# except ImportError:
from pycocotools.cocoeval import COCOeval
logger.warning("Use standard COCOeval.")
cocoEval = COCOeval(cocoGt, cocoDt, annType[1])
cocoEval.evaluate()
cocoEval.accumulate()
redirect_string = io.StringIO()
with contextlib.redirect_stdout(redirect_string):
cocoEval.summarize()
info += redirect_string.getvalue()
cat_ids = list(cocoGt.cats.keys())
cat_names = [cocoGt.cats[catId]['name'] for catId in sorted(cat_ids)]
if self.per_class_AP:
AP_table = per_class_AP_table(cocoEval, class_names=cat_names)
info += "per class AP:\n" + AP_table + "\n"
if self.per_class_AR:
AR_table = per_class_AR_table(cocoEval, class_names=cat_names)
info += "per class AR:\n" + AR_table + "\n"
return cocoEval.stats[0], cocoEval.stats[1], info
else:
return 0, 0, info
|