File size: 24,285 Bytes
b84549f
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
from typing import Dict, List, Optional, Type, Union
from ..datasets.ab_dataset import ABDataset
# from benchmark.data.visualize import visualize_classes_in_object_detection
# from benchmark.scenario.val_domain_shift import get_val_domain_shift_transform
from ..dataset import get_dataset
import copy
from torchvision.transforms import Compose

from .merge_alias import merge_the_same_meaning_classes
from ..datasets.registery import static_dataset_registery


# some legacy aliases of variables:
# ignore_classes == discarded classes
# private_classes == unknown classes in partial / open-set / universal DA


def _merge_the_same_meaning_classes(classes_info_of_all_datasets):
    final_classes_of_all_datasets, rename_map = merge_the_same_meaning_classes(classes_info_of_all_datasets)
    return final_classes_of_all_datasets, rename_map


def _find_ignore_classes_when_sources_as_to_target_b(as_classes: List[List[str]], b_classes: List[str], da_mode):
    thres = {'da': 3, 'partial_da': 2, 'open_set_da': 1, 'universal_da': 0}[da_mode]
    
    from functools import reduce
    a_classes = reduce(lambda res, cur: res | set(cur), as_classes, set())
    
    if set(a_classes) == set(b_classes):
        # a is equal to b, normal
        # 1. no ignore classes; 2. match class idx
        a_ignore_classes, b_ignore_classes = [], []
    
    elif set(a_classes) > set(b_classes):
        # a contains b, partial
        a_ignore_classes, b_ignore_classes = [], []
        if thres == 3 or thres == 1: # ignore extra classes in a
            a_ignore_classes = set(a_classes) - set(b_classes)
        
    elif set(a_classes) < set(b_classes):
        # a is contained by b, open set
        a_ignore_classes, b_ignore_classes = [], []
        if thres == 3 or thres == 2: # ignore extra classes in b
            b_ignore_classes = set(b_classes) - set(a_classes)
    
    elif len(set(a_classes) & set(b_classes)) > 0:
        a_ignore_classes, b_ignore_classes = [], []
        if thres == 3:
            a_ignore_classes = set(a_classes) - (set(a_classes) & set(b_classes))
            b_ignore_classes = set(b_classes) - (set(a_classes) & set(b_classes))
        elif thres == 2:
            b_ignore_classes = set(b_classes) - (set(a_classes) & set(b_classes))
        elif thres == 1:
            a_ignore_classes = set(a_classes) - (set(a_classes) & set(b_classes))
    
    else:
        return None # a has no intersection with b, none
    
    as_ignore_classes = [list(set(a_classes) & set(a_ignore_classes)) for a_classes in as_classes]
    
    return as_ignore_classes, list(b_ignore_classes)


def _find_private_classes_when_sources_as_to_target_b(as_classes: List[List[str]], b_classes: List[str], da_mode):
    thres = {'da': 3, 'partial_da': 2, 'open_set_da': 1, 'universal_da': 0}[da_mode]
    
    from functools import reduce
    a_classes = reduce(lambda res, cur: res | set(cur), as_classes, set())
    
    if set(a_classes) == set(b_classes):
        # a is equal to b, normal
        # 1. no ignore classes; 2. match class idx
        a_private_classes, b_private_classes = [], []
    
    elif set(a_classes) > set(b_classes):
        # a contains b, partial
        a_private_classes, b_private_classes = [], []
        # if thres == 2 or thres == 0: # ignore extra classes in a
        #     a_private_classes = set(a_classes) - set(b_classes)
        # if thres == 0: # ignore extra classes in a
        #     a_private_classes = set(a_classes) - set(b_classes)
            
    elif set(a_classes) < set(b_classes):
        # a is contained by b, open set
        a_private_classes, b_private_classes = [], []
        if thres == 1 or thres == 0: # ignore extra classes in b
            b_private_classes = set(b_classes) - set(a_classes)
    
    elif len(set(a_classes) & set(b_classes)) > 0:
        a_private_classes, b_private_classes = [], []
        if thres == 0:
            # a_private_classes = set(a_classes) - (set(a_classes) & set(b_classes))
            
            b_private_classes = set(b_classes) - (set(a_classes) & set(b_classes))
        elif thres == 1:
            b_private_classes = set(b_classes) - (set(a_classes) & set(b_classes))
        elif thres == 2:
            # a_private_classes = set(a_classes) - (set(a_classes) & set(b_classes))
            pass
        
    else:
        return None # a has no intersection with b, none
    
    return list(b_private_classes)


class _ABDatasetMetaInfo:
    def __init__(self, name, classes, task_type, object_type, class_aliases, shift_type):
        self.name = name
        self.classes = classes
        self.class_aliases = class_aliases
        self.shift_type = shift_type
        self.task_type = task_type
        self.object_type = object_type
        
        
def _get_dist_shift_type_when_source_a_to_target_b(a: _ABDatasetMetaInfo, b: _ABDatasetMetaInfo):
    if b.shift_type is None:
        return 'Dataset Shifts'
    
    if a.name in b.shift_type.keys():
        return b.shift_type[a.name]
    
    mid_dataset_name = list(b.shift_type.keys())[0]
    mid_dataset_meta_info = _ABDatasetMetaInfo(mid_dataset_name, *static_dataset_registery[mid_dataset_name][1:])
    
    return _get_dist_shift_type_when_source_a_to_target_b(a, mid_dataset_meta_info) + ' + ' + list(b.shift_type.values())[0]

    
def _handle_all_datasets_v2(source_datasets: List[_ABDatasetMetaInfo], target_datasets: List[_ABDatasetMetaInfo], da_mode):
    
    # 1. merge the same meaning classes
    classes_info_of_all_datasets = {
        d.name: (d.classes, d.class_aliases)
        for d in source_datasets + target_datasets
    }
    final_classes_of_all_datasets, rename_map = _merge_the_same_meaning_classes(classes_info_of_all_datasets)
    all_datasets_classes = copy.deepcopy(final_classes_of_all_datasets)

    # print(all_datasets_known_classes)
    
    # 2. find ignored classes according to DA mode
    # source_datasets_ignore_classes, target_datasets_ignore_classes = {d.name: [] for d in source_datasets}, \
    #     {d.name: [] for d in target_datasets}
    # source_datasets_private_classes, target_datasets_private_classes = {d.name: [] for d in source_datasets}, \
    #     {d.name: [] for d in target_datasets}
    target_source_relationship_map = {td.name: {} for td in target_datasets}
    # source_target_relationship_map = {sd.name: [] for sd in source_datasets}
    
    # 1. construct target_source_relationship_map
    for sd in source_datasets:#sd和td使列表中每一个元素(类)的实例
        for td in target_datasets:
            sc = all_datasets_classes[sd.name]
            tc = all_datasets_classes[td.name]
            
            if len(set(sc) & set(tc)) == 0:#只保留有相似类别的源域和目标域
                continue
            
            target_source_relationship_map[td.name][sd.name] = _get_dist_shift_type_when_source_a_to_target_b(sd, td)
    
    # print(target_source_relationship_map)
    # exit()
    
    source_datasets_ignore_classes = {}
    for td_name, v1 in target_source_relationship_map.items():
        for sd_name, v2 in v1.items():
            source_datasets_ignore_classes[sd_name + '|' + td_name] = []
    target_datasets_ignore_classes = {d.name: [] for d in target_datasets}
    target_datasets_private_classes = {d.name: [] for d in target_datasets}
    # 保证对于每个目标域上的DA都符合给定的label shift
    # 所以不同目标域就算对应同一个源域,该源域也可能不相同
    
    for td_name, v1 in target_source_relationship_map.items():
        sd_names = list(v1.keys())
        
        sds_classes = [all_datasets_classes[sd_name] for sd_name in sd_names]
        td_classes = all_datasets_classes[td_name]
        ss_ignore_classes, t_ignore_classes = _find_ignore_classes_when_sources_as_to_target_b(sds_classes, td_classes, da_mode)#根据DA方式不同产生ignore_classes
        t_private_classes = _find_private_classes_when_sources_as_to_target_b(sds_classes, td_classes, da_mode)
        
        for sd_name, s_ignore_classes in zip(sd_names, ss_ignore_classes):
            source_datasets_ignore_classes[sd_name + '|' + td_name] = s_ignore_classes
        target_datasets_ignore_classes[td_name] = t_ignore_classes
        target_datasets_private_classes[td_name] = t_private_classes

    source_datasets_ignore_classes = {k: sorted(set(v), key=v.index) for k, v in source_datasets_ignore_classes.items()}
    target_datasets_ignore_classes = {k: sorted(set(v), key=v.index) for k, v in target_datasets_ignore_classes.items()}
    target_datasets_private_classes = {k: sorted(set(v), key=v.index) for k, v in target_datasets_private_classes.items()}
    
    # for k, v in source_datasets_ignore_classes.items():
    #     print(k, len(v))
    # print()
    # for k, v in target_datasets_ignore_classes.items():
    #     print(k, len(v))
    # print()
    # for k, v in target_datasets_private_classes.items():
    #     print(k, len(v))
    # print()
    
    # print(source_datasets_private_classes, target_datasets_private_classes)
    # 3. reparse classes idx
    # 3.1. agg all used classes
    # all_used_classes = []
    # all_datasets_private_class_idx_map = {}
    
    # source_datasets_classes_idx_map = {}
    # for td_name, v1 in target_source_relationship_map.items():
    #     for sd_name, v2 in v1.items():
    #         source_datasets_classes_idx_map[sd_name + '|' + td_name] = []
    # target_datasets_classes_idx_map = {}
    
    global_idx = 0
    all_used_classes_idx_map = {}
    # all_datasets_known_classes = {d: [] for d in final_classes_of_all_datasets.keys()}
    for dataset_name, classes in all_datasets_classes.items():
        if dataset_name not in target_datasets_ignore_classes.keys():
            ignore_classes = [0] * 100000
            for sn, sic in source_datasets_ignore_classes.items():
                if sn.startswith(dataset_name):
                    if len(sic) < len(ignore_classes):
                        ignore_classes = sic
        else:
            ignore_classes = target_datasets_ignore_classes[dataset_name]
        private_classes = [] \
            if dataset_name not in target_datasets_ignore_classes.keys() else target_datasets_private_classes[dataset_name]
        
        for c in classes:
            if c not in ignore_classes and c not in all_used_classes_idx_map.keys() and c not in private_classes:
                all_used_classes_idx_map[c] = global_idx
                global_idx += 1
                
    # print(all_used_classes_idx_map)
    
    # dataset_private_class_idx_offset = 0
    target_private_class_idx = global_idx
    target_datasets_private_class_idx = {d: None for d in target_datasets_private_classes.keys()}
    
    for dataset_name, classes in final_classes_of_all_datasets.items():
        if dataset_name not in target_datasets_private_classes.keys():
            continue
        
        # ignore_classes = target_datasets_ignore_classes[dataset_name]
        private_classes = target_datasets_private_classes[dataset_name]
        # private_classes = [] \
        #     if dataset_name in source_datasets_private_classes.keys() else target_datasets_private_classes[dataset_name]
        # for c in classes:
        #     if c not in ignore_classes and c not in all_used_classes_idx_map.keys() and c in private_classes:
        #         all_used_classes_idx_map[c] = global_idx + dataset_private_class_idx_offset
                
        if len(private_classes) > 0:
            # all_datasets_private_class_idx[dataset_name] = global_idx + dataset_private_class_idx_offset
            # dataset_private_class_idx_offset += 1
            # if dataset_name in source_datasets_private_classes.keys():
            #     if source_private_class_idx is None:
            #         source_private_class_idx = global_idx if target_private_class_idx is None else target_private_class_idx + 1
            #     all_datasets_private_class_idx[dataset_name] = source_private_class_idx
            # else:
            #     if target_private_class_idx is None:
            #         target_private_class_idx = global_idx if source_private_class_idx is None else source_private_class_idx + 1
            #     all_datasets_private_class_idx[dataset_name] = target_private_class_idx
            target_datasets_private_class_idx[dataset_name] = target_private_class_idx
            target_private_class_idx += 1
            
            
    # all_used_classes = sorted(set(all_used_classes), key=all_used_classes.index)
    # all_used_classes_idx_map = {c: i for i, c in enumerate(all_used_classes)}
    
    # print('rename_map', rename_map)
    
    # 3.2 raw_class -> rename_map[raw_classes] -> all_used_classes_idx_map
    all_datasets_e2e_idx_map = {}
    all_datasets_e2e_class_to_idx_map = {}
    
    for td_name, v1 in target_source_relationship_map.items():
        sd_names = list(v1.keys())
        sds_classes = [all_datasets_classes[sd_name] for sd_name in sd_names]
        td_classes = all_datasets_classes[td_name]
        
        for sd_name, sd_classes in zip(sd_names, sds_classes):
            cur_e2e_idx_map = {}
            cur_e2e_class_to_idx_map = {}
        
            for raw_ci, raw_c in enumerate(sd_classes):
                renamed_c = raw_c if raw_c not in rename_map[dataset_name] else rename_map[dataset_name][raw_c]
                
                ignore_classes = source_datasets_ignore_classes[sd_name + '|' + td_name]
                if renamed_c in ignore_classes:
                    continue
                
                idx = all_used_classes_idx_map[renamed_c]
                
                cur_e2e_idx_map[raw_ci] = idx
                cur_e2e_class_to_idx_map[raw_c] = idx
                
            all_datasets_e2e_idx_map[sd_name + '|' + td_name] = cur_e2e_idx_map
            all_datasets_e2e_class_to_idx_map[sd_name + '|' + td_name] = cur_e2e_class_to_idx_map   
        cur_e2e_idx_map = {}
        cur_e2e_class_to_idx_map = {}
        for raw_ci, raw_c in enumerate(td_classes):
            renamed_c = raw_c if raw_c not in rename_map[dataset_name] else rename_map[dataset_name][raw_c]
            
            ignore_classes = target_datasets_ignore_classes[td_name]
            if renamed_c in ignore_classes:
                continue
            
            if renamed_c in target_datasets_private_classes[td_name]:
                idx = target_datasets_private_class_idx[td_name]
            else:
                idx = all_used_classes_idx_map[renamed_c]
            
            cur_e2e_idx_map[raw_ci] = idx
            cur_e2e_class_to_idx_map[raw_c] = idx
            
        all_datasets_e2e_idx_map[td_name] = cur_e2e_idx_map
        all_datasets_e2e_class_to_idx_map[td_name] = cur_e2e_class_to_idx_map
        
    all_datasets_ignore_classes = {**source_datasets_ignore_classes, **target_datasets_ignore_classes}
    # all_datasets_private_classes = {**source_datasets_private_classes, **target_datasets_private_classes}
    
    classes_idx_set = []
    for d, m in all_datasets_e2e_class_to_idx_map.items():
        classes_idx_set += list(m.values())
    classes_idx_set = set(classes_idx_set)
    num_classes = len(classes_idx_set)

    return all_datasets_ignore_classes, target_datasets_private_classes, \
        all_datasets_e2e_idx_map, all_datasets_e2e_class_to_idx_map, target_datasets_private_class_idx, \
        target_source_relationship_map, rename_map, num_classes

    
def _build_scenario_info_v2(
    source_datasets_name: List[str],
    target_datasets_order: List[str],
    da_mode: str
):
    assert da_mode in ['close_set', 'partial', 'open_set', 'universal']
    da_mode = {'close_set': 'da', 'partial': 'partial_da', 'open_set': 'open_set_da', 'universal': 'universal_da'}[da_mode]
    
    source_datasets_meta_info = [_ABDatasetMetaInfo(d, *static_dataset_registery[d][1:]) for d in source_datasets_name]#获知对应的名字和对应属性,要添加数据集时,直接register就行
    target_datasets_meta_info = [_ABDatasetMetaInfo(d, *static_dataset_registery[d][1:]) for d in list(set(target_datasets_order))]

    all_datasets_ignore_classes, target_datasets_private_classes, \
        all_datasets_e2e_idx_map, all_datasets_e2e_class_to_idx_map, target_datasets_private_class_idx, \
        target_source_relationship_map, rename_map, num_classes \
        = _handle_all_datasets_v2(source_datasets_meta_info, target_datasets_meta_info, da_mode)
        
    return all_datasets_ignore_classes, target_datasets_private_classes, \
        all_datasets_e2e_idx_map, all_datasets_e2e_class_to_idx_map, target_datasets_private_class_idx, \
        target_source_relationship_map, rename_map, num_classes


def build_scenario_manually_v2(
    source_datasets_name: List[str],
    target_datasets_order: List[str],
    da_mode: str,
    data_dirs: Dict[str, str],
    # transforms: Optional[Dict[str, Compose]] = None
):
    configs = copy.deepcopy(locals())#返回当前局部变量
    
    source_datasets_meta_info = [_ABDatasetMetaInfo(d, *static_dataset_registery[d][1:]) for d in source_datasets_name]
    target_datasets_meta_info = [_ABDatasetMetaInfo(d, *static_dataset_registery[d][1:]) for d in list(set(target_datasets_order))]

    all_datasets_ignore_classes, target_datasets_private_classes, \
        all_datasets_e2e_idx_map, all_datasets_e2e_class_to_idx_map, target_datasets_private_class_idx, \
        target_source_relationship_map, rename_map, num_classes \
        = _build_scenario_info_v2(source_datasets_name, target_datasets_order, da_mode)
    # from rich.console import Console
    # console = Console(width=10000)
    
    # def print_obj(_o):
    #     # import pprint
    #     # s = pprint.pformat(_o, width=140, compact=True)
    #     console.print(_o)
    
    # console.print('configs:', style='bold red')
    # print_obj(configs)
    # console.print('renamed classes:', style='bold red')
    # print_obj(rename_map)
    # console.print('discarded classes:', style='bold red')
    # print_obj(all_datasets_ignore_classes)
    # console.print('unknown classes:', style='bold red')
    # print_obj(target_datasets_private_classes)
    # console.print('class to index map:', style='bold red')
    # print_obj(all_datasets_e2e_class_to_idx_map)
    # console.print('index map:', style='bold red')
    # print_obj(all_datasets_e2e_idx_map)
    # console = Console()
    # # console.print('class distribution:', style='bold red')
    # # class_dist = {
    # #     k: {
    # #         '#known classes': len(all_datasets_known_classes[k]),
    # #         '#unknown classes': len(all_datasets_private_classes[k]),
    # #         '#discarded classes': len(all_datasets_ignore_classes[k])
    # #     } for k in all_datasets_ignore_classes.keys()
    # # }
    # # print_obj(class_dist)
    # console.print('corresponding sources of each target:', style='bold red')
    # print_obj(target_source_relationship_map)
    
    # return
    
    # res_source_datasets_map = {d: {split: get_dataset(d, data_dirs[d], split, getattr(transforms, d, None),
    #                                                   all_datasets_ignore_classes[d], all_datasets_e2e_idx_map[d]) 
    #                                for split in ['train', 'val', 'test']} 
    #                            for d in source_datasets_name}
    # res_target_datasets_map = {d: {'train': get_num_limited_dataset(get_dataset(d, data_dirs[d], 'test', getattr(transforms, d, None), 
    #                                                   all_datasets_ignore_classes[d], all_datasets_e2e_idx_map[d]), 
    #                                                                 num_samples_in_each_target_domain),
    #                                'test': get_dataset(d, data_dirs[d], 'test', getattr(transforms, d, None), 
    #                                                   all_datasets_ignore_classes[d], all_datasets_e2e_idx_map[d])
    #                                } 
    #                            for d in list(set(target_datasets_order))}
    
    # res_source_datasets_map = {d: {split: get_dataset(d.split('|')[0], data_dirs[d.split('|')[0]], split, 
    #                                                   getattr(transforms, d.split('|')[0], None),
    #                                                   all_datasets_ignore_classes[d], all_datasets_e2e_idx_map[d]) 
    #                                for split in ['train', 'val', 'test']} 
    #                            for d in all_datasets_ignore_classes.keys() if d.split('|')[0] in source_datasets_name}
    
    # from functools import reduce
    # res_offline_train_source_datasets_map = {}
    # res_offline_train_source_datasets_map_names = {}
    
    # for d in source_datasets_name:
    #     source_dataset_with_max_num_classes = None
        
    #     for ed_name, ed in res_source_datasets_map.items():
    #         if not ed_name.startswith(d):
    #             continue
            
    #         if source_dataset_with_max_num_classes is None:
    #             source_dataset_with_max_num_classes = ed
    #             res_offline_train_source_datasets_map_names[d] = ed_name
                
    #         if len(ed['train'].ignore_classes) < len(source_dataset_with_max_num_classes['train'].ignore_classes):
    #             source_dataset_with_max_num_classes = ed
    #             res_offline_train_source_datasets_map_names[d] = ed_name
                
    #     res_offline_train_source_datasets_map[d] = source_dataset_with_max_num_classes

    # res_target_datasets_map = {d: {split: get_dataset(d, data_dirs[d], split, getattr(transforms, d, None),
    #                                                   all_datasets_ignore_classes[d], all_datasets_e2e_idx_map[d]) 
    #                                for split in ['train', 'val', 'test']} 
    #                            for d in list(set(target_datasets_order))}
    
    from .scenario import Scenario, DatasetMetaInfo
    
    # test_scenario = Scenario(
    #     config=configs,
    #     offline_source_datasets_meta_info={
    #         d: DatasetMetaInfo(d, 
    #                            {k: v for k, v in all_datasets_e2e_class_to_idx_map[res_offline_train_source_datasets_map_names[d]].items()}, 
    #                            None)
    #         for d in source_datasets_name
    #     },
    #     offline_source_datasets={d: res_offline_train_source_datasets_map[d] for d in source_datasets_name},

    #     online_datasets_meta_info=[
    #         (
    #             {sd + '|' + d:  DatasetMetaInfo(d, 
    #                            {k: v for k, v in all_datasets_e2e_class_to_idx_map[sd + '|' + d].items()}, 
    #                            None)
    #              for sd in target_source_relationship_map[d].keys()},
    #             DatasetMetaInfo(d, 
    #                            {k: v for k, v in all_datasets_e2e_class_to_idx_map[d].items() if k not in target_datasets_private_classes[d]}, 
    #                            target_datasets_private_class_idx[d])
    #         )
    #         for d in target_datasets_order
    #     ],
    #     online_datasets={**res_source_datasets_map, **res_target_datasets_map},
    #     target_domains_order=target_datasets_order,
    #     target_source_map=target_source_relationship_map,
    #     num_classes=num_classes
    # )
    import os
    os.environ['_ZQL_NUMC'] = str(num_classes)

    test_scenario = Scenario(config=configs, all_datasets_ignore_classes_map=all_datasets_ignore_classes,
                             all_datasets_idx_map=all_datasets_e2e_idx_map,
                             target_domains_order=target_datasets_order,
                             target_source_map=target_source_relationship_map,
                             all_datasets_e2e_class_to_idx_map=all_datasets_e2e_class_to_idx_map,
                             num_classes=num_classes)


    return test_scenario


if __name__ == '__main__':
    test_scenario = build_scenario_manually_v2(['CIFAR10', 'SVHN'],
                               ['STL10', 'MNIST', 'STL10', 'USPS', 'MNIST', 'STL10'],
                               'close_set')
    print(test_scenario.num_classes)