LDY commited on
Commit
cbc2ae6
·
1 Parent(s): cd588d7

Update app.py

Browse files
Files changed (1) hide show
  1. app.py +208 -32
app.py CHANGED
@@ -1,33 +1,209 @@
 
 
 
 
 
 
 
1
 
2
- from diffusers import LDMTextToImagePipeline,DiffusionPipeline
3
- import gradio as gr
4
- import PIL.Image
5
- import numpy as np
6
- import random
7
- import torch
8
- # from transformers import eBart
9
- # model = eBart.from_pretrained("dalle-mini/dalle-mega")
10
- ldm_pipeline = DiffusionPipeline.from_pretrained("dalle-mini/dalle-mega")
11
-
12
-
13
- def predict(prompt, steps=100, seed=42, guidance_scale=6.0):
14
- torch.cuda.empty_cache()
15
- generator = torch.manual_seed(seed)
16
- img = model([prompt])
17
- images = ldm_pipeline([prompt], generator=generator, num_inference_steps=steps, eta=0.3, guidance_scale=guidance_scale)["sample"]
18
- return images[0]
19
-
20
- random_seed = random.randint(0, 2147483647)
21
- gr.Interface(
22
- predict,
23
- inputs=[
24
- gr.inputs.Textbox(label='Prompt', default='a chalk pastel drawing of a llama wearing a wizard hat'),
25
- gr.inputs.Slider(1, 100, label='Inference Steps', default=50, step=1),
26
- gr.inputs.Slider(0, 2147483647, label='Seed', default=random_seed, step=1),
27
- gr.inputs.Slider(1.0, 20.0, label='Guidance Scale - how much the prompt will influence the results', default=6.0, step=0.1),
28
- ],
29
- outputs=gr.Image(shape=[256,256], type="pil", elem_id="output_image"),
30
- css="#output_image{width: 256px}",
31
- title="Text-To-Image - 🧨 diffusers library",
32
- description="This Spaces contains a text-to-image Latent Diffusion process for the <a href=\"https://huggingface.co/spaces/LDY/TextToImage\">main Spaces</a>.",
33
- ).launch()
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import gradio
2
+ import subprocess
3
+ from PIL import Image
4
+ import torch, torch.backends.cudnn, torch.backends.cuda
5
+ from min_dalle import MinDalle
6
+ from emoji import demojize
7
+ import string
8
 
9
+ def filename_from_text(text: str) -> str:
10
+ text = demojize(text, delimiters=['', ''])
11
+ text = text.lower().encode('ascii', errors='ignore').decode()
12
+ allowed_chars = string.ascii_lowercase + ' '
13
+ text = ''.join(i for i in text.lower() if i in allowed_chars)
14
+ text = text[:64]
15
+ text = '-'.join(text.strip().split())
16
+ if len(text) == 0: text = 'blank'
17
+ return text
18
+
19
+ def log_gpu_memory():
20
+ print(subprocess.check_output('nvidia-smi').decode('utf-8'))
21
+
22
+ log_gpu_memory()
23
+
24
+ model = MinDalle(
25
+ is_mega=True,
26
+ is_reusable=True,
27
+ device='cuda',
28
+ dtype=torch.float32
29
+ )
30
+
31
+ log_gpu_memory()
32
+
33
+ def run_model(
34
+ text: str,
35
+ grid_size: int,
36
+ is_seamless: bool,
37
+ save_as_png: bool,
38
+ temperature: float,
39
+ supercondition: str,
40
+ top_k: str
41
+ ) -> str:
42
+ torch.set_grad_enabled(False)
43
+ torch.backends.cudnn.enabled = True
44
+ torch.backends.cudnn.deterministic = False
45
+ torch.backends.cudnn.benchmark = True
46
+ torch.backends.cuda.matmul.allow_tf32 = True
47
+ torch.backends.cuda.matmul.allow_fp16_reduced_precision_reduction = True
48
+
49
+ print('text:', text)
50
+ print('grid_size:', grid_size)
51
+ print('is_seamless:', is_seamless)
52
+ print('temperature:', temperature)
53
+ print('supercondition:', supercondition)
54
+ print('top_k:', top_k)
55
+
56
+ try:
57
+ temperature = float(temperature)
58
+ assert(temperature > 1e-6)
59
+ except:
60
+ raise Exception('Temperature must be a positive nonzero number')
61
+ try:
62
+ grid_size = int(grid_size)
63
+ assert(grid_size <= 5)
64
+ assert(grid_size >= 1)
65
+ except:
66
+ raise Exception('Grid size must be between 1 and 5')
67
+ try:
68
+ top_k = int(top_k)
69
+ assert(top_k <= 16384)
70
+ assert(top_k >= 1)
71
+ except:
72
+ raise Exception('Top k must be between 1 and 16384')
73
+
74
+ with torch.no_grad():
75
+ image = model.generate_image(
76
+ text = text,
77
+ seed = -1,
78
+ grid_size = grid_size,
79
+ is_seamless = bool(is_seamless),
80
+ temperature = temperature,
81
+ supercondition_factor = float(supercondition),
82
+ top_k = top_k,
83
+ is_verbose = True
84
+ )
85
+
86
+ log_gpu_memory()
87
+
88
+ ext = 'png' if bool(save_as_png) else 'jpg'
89
+ filename = filename_from_text(text)
90
+ image_path = '{}.{}'.format(filename, ext)
91
+ image.save(image_path)
92
+
93
+ return image_path
94
+
95
+ demo = gradio.Blocks(analytics_enabled=True)
96
+
97
+ with demo:
98
+ with gradio.Row():
99
+ with gradio.Column():
100
+ input_text = gradio.Textbox(
101
+ label='Input Text',
102
+ value='Rusty Iron Man suit found abandoned in the woods being reclaimed by nature',
103
+ lines=3
104
+ )
105
+ run_button = gradio.Button(value='Generate Image').style(full_width=True)
106
+ output_image = gradio.Image(
107
+ value='examples/rusty-iron-man.jpg',
108
+ label='Output Image',
109
+ type='file',
110
+ interactive=False
111
+ )
112
+
113
+ with gradio.Column():
114
+ gradio.Markdown('## Settings')
115
+ with gradio.Row():
116
+ grid_size = gradio.Slider(
117
+ label='Grid Size',
118
+ value=3,
119
+ minimum=1,
120
+ maximum=5,
121
+ step=1
122
+ )
123
+ save_as_png = gradio.Checkbox(
124
+ label='Output PNG',
125
+ value=False
126
+ )
127
+ is_seamless = gradio.Checkbox(
128
+ label='Seamless',
129
+ value=False
130
+ )
131
+ gradio.Markdown('#### Advanced')
132
+ with gradio.Row():
133
+ temperature = gradio.Number(
134
+ label='Temperature',
135
+ value=1
136
+ )
137
+ top_k = gradio.Dropdown(
138
+ label='Top-k',
139
+ choices=[str(2 ** i) for i in range(15)],
140
+ value='128'
141
+ )
142
+ supercondition = gradio.Dropdown(
143
+ label='Super Condition',
144
+ choices=[str(2 ** i) for i in range(2, 7)],
145
+ value='16'
146
+ )
147
+
148
+ gradio.Markdown(
149
+ """
150
+ ####
151
+ - **Input Text**: For long prompts, only the first 64 text tokens will be used to generate the image.
152
+ - **Grid Size**: Size of the image grid. 3x3 takes about 15 seconds.
153
+ - **Seamless**: Tile images in image token space instead of pixel space.
154
+ - **Temperature**: High temperature increases the probability of sampling low scoring image tokens.
155
+ - **Top-k**: Each image token is sampled from the top-k scoring tokens.
156
+ - **Super Condition**: Higher values can result in better agreement with the text.
157
+ """
158
+ )
159
+
160
+ gradio.Examples(
161
+ examples=[
162
+ ['Rusty Iron Man suit found abandoned in the woods being reclaimed by nature', 3, 'examples/rusty-iron-man.jpg'],
163
+ ['Moai statue giving a TED Talk', 5, 'examples/moai-statue.jpg'],
164
+ ['Court sketch of Godzilla on trial', 5, 'examples/godzilla-trial.jpg'],
165
+ ['lofi nuclear war to relax and study to', 5, 'examples/lofi-nuclear-war.jpg'],
166
+ ['Karl Marx slimed at Kids Choice Awards', 4, 'examples/marx-slimed.jpg'],
167
+ ['Scientists trying to rhyme orange with banana', 4, 'examples/scientists-rhyme.jpg'],
168
+ ['Jesus turning water into wine on Americas Got Talent', 5, 'examples/jesus-talent.jpg'],
169
+ ['Elmo in a street riot throwing a Molotov cocktail, hyperrealistic', 5, 'examples/elmo-riot.jpg'],
170
+ ['Trail cam footage of gollum eating watermelon', 4, 'examples/gollum.jpg'],
171
+ ['Funeral at Whole Foods', 4, 'examples/funeral-whole-foods.jpg'],
172
+ ['Singularity, hyperrealism', 5, 'examples/singularity.jpg'],
173
+ ['Astronaut riding a horse hyperrealistic', 5, 'examples/astronaut-horse.jpg'],
174
+ ['An astronaut walking on Mars next to a Starship rocket, realistic', 5, 'examples/astronaut-mars.jpg'],
175
+ ['Nuclear explosion broccoli', 4, 'examples/nuclear-broccoli.jpg'],
176
+ ['Dali painting of WALL·E', 5, 'examples/dali-walle.jpg'],
177
+ ['Cleopatra checking her iPhone', 4, 'examples/cleopatra-iphone.jpg'],
178
+ ],
179
+ inputs=[
180
+ input_text,
181
+ grid_size,
182
+ output_image
183
+ ],
184
+ examples_per_page=20
185
+ )
186
+
187
+ run_button.click(
188
+ fn=run_model,
189
+ inputs=[
190
+ input_text,
191
+ grid_size,
192
+ is_seamless,
193
+ save_as_png,
194
+ temperature,
195
+ supercondition,
196
+ top_k
197
+ ],
198
+ outputs=[
199
+ output_image
200
+ ]
201
+ )
202
+
203
+ gradio.Markdown(
204
+ """
205
+ ### **[❤️ Sponsor](https://github.com/sponsors/kuprel)**
206
+ """
207
+ )
208
+
209
+ demo.launch()