Text-To-Image / app.py
YongLD
Add application files
e5f2ff8
raw
history blame
1.33 kB
from diffusers import LDMTextToImagePipeline
import gradio as gr
import PIL.Image
import numpy as np
import random
import torch
ldm_pipeline = LDMTextToImagePipeline.from_pretrained("dalle-mini/dalle-mega")
def predict(prompt, steps=100, seed=42, guidance_scale=6.0):
torch.cuda.empty_cache()
generator = torch.manual_seed(seed)
images = ldm_pipeline([prompt], generator=generator, num_inference_steps=steps, eta=0.3, guidance_scale=guidance_scale)["sample"]
return images[0]
random_seed = random.randint(0, 2147483647)
gr.Interface(
predict,
inputs=[
gr.inputs.Textbox(label='Prompt', default='a chalk pastel drawing of a llama wearing a wizard hat'),
gr.inputs.Slider(1, 100, label='Inference Steps', default=50, step=1),
gr.inputs.Slider(0, 2147483647, label='Seed', default=random_seed, step=1),
gr.inputs.Slider(1.0, 20.0, label='Guidance Scale - how much the prompt will influence the results', default=6.0, step=0.1),
],
outputs=gr.Image(shape=[256,256], type="pil", elem_id="output_image"),
css="#output_image{width: 256px}",
title="Text-To-Image - 🧨 diffusers library",
description="This Spaces contains a text-to-image Latent Diffusion process for the <a href=\"https://huggingface.co/spaces/LDY/TextToImage\">main Spaces</a>.",
).launch()