KyuDan1
first
6518d17
import gradio as gr
from transformers import AutoModelForSequenceClassification, AutoTokenizer
import torch
# Load model and tokenizer
model_name = "Kyudan/distilbert-base-uncased-finetuned-cola"
model = AutoModelForSequenceClassification.from_pretrained(model_name)
tokenizer = AutoTokenizer.from_pretrained(model_name)
def classify_text(text):
# Tokenize the input text
inputs = tokenizer(text, return_tensors="pt", truncation=True, padding=True)
# Perform inference
with torch.no_grad():
outputs = model(**inputs)
# Get the predicted class and its probability
probabilities = torch.nn.functional.softmax(outputs.logits, dim=-1)
predicted_class = torch.argmax(probabilities, dim=-1).item()
confidence = probabilities[0][predicted_class].item()
# Map the predicted class to a label (assuming binary classification)
label = "Positive" if predicted_class == 1 else "Negative"
return f"Classification: {label}\nConfidence: {confidence:.2f}"
# Gradio interface setup
demo = gr.Interface(
fn=classify_text,
inputs="text",
outputs="text",
title="Text Classification Demo",
description="Enter a sentence to classify its sentiment (positive/negative)."
)
if __name__ == "__main__":
demo.launch(share=True)