File size: 27,034 Bytes
095af13 2fb0118 84574b6 f1ee166 87c3c2a ba5feca 87c3c2a 51ed446 e1448ba 38f35ec bf7bbab c0ed78f 0eb04e4 c1c578d 2b4621b 85ce074 7a0283e 095af13 bea0315 22d0bb6 3597a5d 22d0bb6 095af13 06bf79a 095af13 2201892 9494916 095af13 59f11b4 095af13 58d61a1 7a0283e 1cce22e c0ed78f c1c578d c0ed78f c1c578d 58d61a1 7a0283e d5c31be 7a0283e a014c9f 7a0283e d5c31be 7a0283e 8dd1a05 a014c9f 8dd1a05 c0ed78f 8dd1a05 685d9ff 11cf37d 8dd1a05 4166bc4 2af4d6d 894af86 9f8372e 1ba44fd 2af4d6d 1ba44fd 2af4d6d 5af4057 9f8372e 52f5da4 9f8372e ec82333 13e1204 9f8372e 45b4d1a e31ea68 13e1204 45b4d1a 9f8372e 45b4d1a 9f8372e 2af4d6d 0b4abe4 ec82333 5035a76 ec82333 e1a2ed8 bf7bbab 557f10b afb4251 8b029c2 afb4251 8b029c2 87c3c2a e30d518 87c3c2a 38f35ec f12a8d4 38f35ec 85ce074 38f35ec 87c3c2a 2b4621b 4deaaad 2b4621b 4deaaad 2b4621b 4deaaad f1ee166 1bf57b4 1671f43 f1ee166 1671f43 f1ee166 c0ed78f 113044c b732370 0a46698 b732370 0a46698 b732370 113044c 0a46698 2e793f8 113044c c0ed78f 0b4abe4 c0ed78f 0b4abe4 c0ed78f 0b4abe4 2af4d6d c0ed78f 985e15b 8ff824e 82fd672 985e15b 0385117 985e15b 8ff824e 985e15b 58d61a1 095af13 3f43266 211b824 bcaeb16 095af13 4ca849c 095af13 87c3c2a 095af13 4ca849c ceeb8a8 4ca849c 095af13 4ca849c 095af13 4ca849c 095af13 8c53df2 2af4d6d 9c632f4 1e87b46 d557945 ec82333 284e8b8 1e87b46 1ba44fd e8f973d 1ba44fd 1e87b46 284e8b8 1e87b46 ec82333 bf7bbab ec82333 5af4057 894af86 9a1876e 557f10b 9a1876e 557f10b 9a1876e 557f10b 9a1876e 8b029c2 9a1876e 87c3c2a 1f10f3f 3dd73af 51ed446 3dd73af 7f476e3 a1c6dd2 3dd73af 211b824 a8b15f5 7e84ef0 e30d518 87c3c2a e30d518 211b824 e8434c9 7a0283e |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 |
const os = require('os')
const bytes = require('bytes')
const sharp = require('sharp')
const morgan = require('morgan')
const express = require('express')
const PDFDocument = require('pdfkit')
const axios = require("axios")
const FormData = require("form-data")
const ytdl = require('ytdl-core')
const tfjs = require('@tensorflow/tfjs-node')
const Upscaler = require('upscaler/node')
const nsfwjs = require('nsfwjs')
const jpegjs = require('jpeg-js')
const Jimp = require('jimp')
const fileType = require("file-type")
const Waifu2X = require('@ibaraki-douji/waifu2x')
//const Stress = require('./lib/ddos.js');
//const { BingChat } = (await import("bing-chat")).default
const { acytoo, chatgpt_4 } = require("./lib/chatgpt.js")
const { sss_instagram, gramvio } = require("./lib/instagram.js")
const { allToJpg } = require("./lib/convertFormat.js")
const apikey = "@SadTeam77"
const app = express()
app.set('json spaces', 4)
app.use(morgan('dev'))
app.use(express.json({ limit: "500mb" }))
app.use(express.urlencoded({ limit: '500mb', extended: true }))
app.use((req, res, next) => {
load_model(),
next()
})
app.all('/', (req, res) => {
const status = {}
const used = process.memoryUsage()
for (let key in used) status[key] = formatSize(used[key])
const totalmem = os.totalmem()
const freemem = os.freemem()
status.memoryUsage = `${formatSize(totalmem - freemem)} / ${formatSize(totalmem)}`
console.log("YOUR IP: " + req.ip)
res.json({
creator: "@SadTeams",
message: 'Hello World!!',
uptime: new Date(process.uptime() * 1000).toUTCString().split(' ')[4],
status
})
})
app.post('/imagetopdf', async (req, res) => {
try {
console.log(req.body)
const { images } = req.body
if (!images) return res.json({ success: false, message: 'Required an array image url' })
const buffer = await toPDF(images)
res.setHeader('Content-Disposition', `attachment; filename=${Math.random().toString(36).slice(2)}.pdf`)
res.setHeader('Content-Type', 'application/pdf')
res.setHeader('Content-Length', buffer.byteLength)
res.send(buffer)
} catch (e) {
console.log(e)
e = String(e)
res.json({ error: true, message: e === '[object Object]' ? 'Internal Server Error' : e })
}
})
app.post('/api/chatgpt', async (req, res) => {
try {
console.log(req.body)
const { prompt, model, status } = req.body
if (!prompt) return res.json({ success: false, message: 'Required an prompt text!' })
if (!model) return res.json({ success: false, message: 'Required an model version!' })
if (!status) return res.json({ success: false, message: 'Required an prompt text!' })
if(status !== apikey) return res.json({ success: false, message: 'Invalid status!' })
if(model == "gpt-4") {
const response = await axios.request({
method: "GET",
url: "https://aemt.me/gpt4?text=" + prompt
})
res.json({
status: "ok",
result: response.data.result
})
} else if(model == "gpt-3.5") {
const response = await acytoo(prompt, "gpt-4")
res.json({
status: "ok",
result: response
})
} else if(model == "gpt-3") {
const response = await acytoo(prompt, "gpt-3.5-turbo")
res.json({
status: "ok",
result: response
})
}
} catch (e) {
console.log(e)
e = String(e)
res.json({ error: true, message: e === '[object Object]' ? 'Internal Server Error' : e })
}
})
app.post('/api/chatgpt2', async (req, res) => {
try {
console.log(req.body)
const { data, prompt, status } = req.body
if (!data) return res.json({ success: false, message: 'Required an data text!' })
if (!prompt) return res.json({ success: false, message: 'Required an prompt text!' })
if (!status) return res.json({ success: false, message: 'Required an status text!' })
if(status !== apikey) return res.json({ success: false, message: 'Invalid status!' })
const response = await axios.request({
method: "GET",
url: `https://aemt.me/prompt/gpt?prompt=${data}&text=${prompt}`
})
res.json({
status: "ok",
result: response.data.result
})
} catch (e) {
console.log(e)
e = String(e)
res.json({ error: true, message: e === '[object Object]' ? 'Internal Server Error' : e })
}
})
app.post('/api/toanime', async (req, res) => {
try {
console.log(req.body)
const { url, status } = req.body
if (!url) return res.json({ success: false, message: 'Required an url!' })
if (!status) return res.json({ success: false, message: 'Required an status text!' })
if(status !== apikey) return res.json({ success: false, message: 'Invalid status!' })
const response = await axios.request({
method: "GET",
url: "https://aemt.me/toanime?url=" + url
})
const image = await axios.request({
method: "GET",
url: response.data.url.img_crop_single,
responseType: "arraybuffer"
})
res.setHeader('Content-Type', 'image/jpeg')
res.send(image.data)
} catch (e) {
console.log(e)
e = String(e)
res.json({ error: true, message: e === '[object Object]' ? 'Internal Server Error' : e })
}
})
app.post('/api/upscaler', async (req, res) => {
try {
console.log(req.body)
const { images, denoise, scale, format, type, status } = req.body
if (!images) return res.json({ success: false, message: 'Required an images!' })
if (!denoise) return res.json({ success: false, message: 'Required an denoise!' })
if (!scale) return res.json({ success: false, message: 'Required an images!' })
if (!format) return res.json({ success: false, message: 'Required an format size!' })
if (!type) return res.json({ success: false, message: 'Required an images!' })
if (!status) return res.json({ success: false, message: 'Required an status text!' })
if(status !== apikey) return res.json({ success: false, message: 'Invalid status!' })
if (/^(https?|http):\/\//i.test(images)) {
const data_img = await axios.request({
method: "GET",
url: images,
responseType: "arraybuffer"
})
const response = await processImageUpscaler(data_img.data, denoise, scale, format, type)
const type_img = await fileType.fromBuffer(response)
res.setHeader('Content-Type', type_img.mime)
res.send(response)
} else if (images && typeof images == 'string' && isBase64(images)) {
const response = await processImage(Buffer.from(images, "base64"), denoise, scale, format, type)
const type_img = await fileType.fromBuffer(response)
res.setHeader('Content-Type', type_img.mime)
res.send(response)
} else {
res.json({
success: false, message: 'No url or base64 detected!!'
})
}
} catch (e) {
console.log(e)
e = String(e)
res.json({ error: true, message: e === '[object Object]' ? 'Internal Server Error' : e })
}
})
app.post('/api/upscaler2', async (req, res) => {
try {
console.log(req.body)
const { images, status } = req.body
if (!images) return res.json({ success: false, message: 'Required an images!' })
if (!status) return res.json({ success: false, message: 'Required an status text!' })
if(status !== apikey) return res.json({ success: false, message: 'Invalid status!' })
if (/^(https?|http):\/\//i.test(images)) {
const data_img = await axios.request({
method: "GET",
url: images,
responseType: "arraybuffer"
})
const response = await upscaleImage(data_img.data)
const type_img = await fileType.fromBuffer(response)
res.setHeader('Content-Type', type_img.mime)
res.send(response)
} else if (images && typeof images == 'string' && isBase64(images)) {
const response = await upscaleImage(Buffer.from(images, "base64"))
const type_img = await fileType.fromBuffer(response)
res.setHeader('Content-Type', type_img.mime)
res.send(response)
} else {
res.json({
success: false, message: 'No url or base64 detected!!'
})
}
} catch (e) {
console.log(e)
e = String(e)
res.json({ error: true, message: e === '[object Object]' ? 'Internal Server Error' : e })
}
})
app.post('/api/upscaler3', async (req, res) => {
try {
console.log(req.body)
const { images, status } = req.body
if (!images) return res.json({ success: false, message: 'Required an images!' })
if (!status) return res.json({ success: false, message: 'Required an status text!' })
if(status !== apikey) return res.json({ success: false, message: 'Invalid status!' })
if (/^(https?|http):\/\//i.test(images)) {
const data_img = await axios.request({
method: "GET",
url: images,
responseType: "arraybuffer"
})
const response = await upscaleImageV2(data_img.data)
const type_img = await fileType.fromBuffer(response)
res.setHeader('Content-Type', type_img.mime)
res.send(response)
} else if (images && typeof images == 'string' && isBase64(images)) {
const response = await upscaleImageV2(Buffer.from(images, "base64"))
const type_img = await fileType.fromBuffer(response)
res.setHeader('Content-Type', type_img.mime)
res.send(response)
} else {
res.json({
success: false, message: 'No url or base64 detected!!'
})
}
} catch (e) {
console.log(e)
e = String(e)
res.json({ error: true, message: e === '[object Object]' ? 'Internal Server Error' : e })
}
})
app.post('/api/', async (req, res) => {
try {
console.log(req.body)
const { images, status } = req.body
if (!images) return res.json({ success: false, message: 'Required an images!' })
if (!status) return res.json({ success: false, message: 'Required an status text!' })
if(status !== apikey) return res.json({ success: false, message: 'Invalid status!' })
if (/^(https?|http):\/\//i.test(images)) {
const data_img = await axios.request({
method: "GET",
url: images,
responseType: "arraybuffer"
})
const response = await upscaleImageV2(data_img.data)
const type_img = await fileType.fromBuffer(response)
res.setHeader('Content-Type', type_img.mime)
res.send(response)
} else if (images && typeof images == 'string' && isBase64(images)) {
const response = await upscaleImageV2(Buffer.from(images, "base64"))
const type_img = await fileType.fromBuffer(response)
res.setHeader('Content-Type', type_img.mime)
res.send(response)
} else {
res.json({
success: false, message: 'No url or base64 detected!!'
})
}
} catch (e) {
console.log(e)
e = String(e)
res.json({ error: true, message: e === '[object Object]' ? 'Internal Server Error' : e })
}
})
app.post('/api/toanime2', async (req, res) => {
try {
console.log(req.body)
const { status, images } = req.body
if (!images) return res.json({ success: false, message: 'Required an images!' })
if (!status) return res.json({ success: false, message: 'Required an status text!' })
if(status !== apikey) return res.json({ success: false, message: 'Invalid status!' })
if (/^(https?|http):\/\//i.test(images)) {
const data_img = await axios.request({
method: "GET",
url: images,
responseType: "arraybuffer"
})
const imageBase64 = Buffer.from(data_img.data, 'binary').toString('base64');
const response = await processImageAnime(imageBase64);
const type_img = await fileType.fromBuffer(response)
res.setHeader('Content-Type', type_img.mime)
res.send(response)
} else if (images && typeof images == 'string' && isBase64(images)) {
const response = await processImageAnime(images)
const type_img = await fileType.fromBuffer(response)
res.setHeader('Content-Type', type_img.mime)
res.send(response)
} else {
res.json({
success: false, message: 'No url or base64 detected!!'
})
}
} catch (e) {
console.log(e)
e = String(e)
res.json({ error: true, message: e === '[object Object]' ? 'Internal Server Error' : e })
}
})
app.post('/api/nsfw-check', async (req, res) => {
try {
console.log(req.body)
const { images, status } = req.body
if (!images) return res.json({ success: false, message: 'Required an images!' })
if (!status) return res.json({ success: false, message: 'Required an status text!' })
if(status !== apikey) return res.json({ success: false, message: 'Invalid status!' })
if (/^(https?|http):\/\//i.test(images)) {
const data_img = await axios.request({
method: "GET",
url: images,
responseType: "arraybuffer"
})
const response = await check_nsfw(data_img.data)
res.json({
status: "ok",
result: response
})
} else if (images && typeof images == 'string' && isBase64(images)) {
const img = Buffer.from(images, "base64")
const type = await fileType.fromBuffer(img)
if (type.ext == "jpg") {
let response = await check_nsfw(img)
res.json({
status: "ok",
result: response
})
}
if (type.ext == "webp") {
let converting = await allToJpg(img)
let response = await check_nsfw(converting)
res.json({
status: "ok",
result: response
})
}
} else {
res.json({
success: false, message: 'No url or base64 detected!!'
})
}
} catch (e) {
console.log(e)
e = String(e)
res.json({ error: true, message: e === '[object Object]' ? 'Internal Server Error' : e })
}
})
app.post('/api/instagram/stalk', async (req, res) => {
try {
console.log(req.body)
const { username, status } = req.body
if (!username) return res.json({ success: false, message: 'Required an username text!' })
if (!status) return res.json({ success: false, message: 'Required an status text!' })
if(status !== apikey) return res.json({ success: false, message: 'Invalid status!' })
const response = await gramvio(username)
res.json({
status: "ok",
result: response
})
} catch (e) {
console.log(e)
e = String(e)
res.json({ error: true, message: e === '[object Object]' ? 'Internal Server Error' : e })
}
})
app.post('/api/instagram/download', async (req, res) => {
try {
console.log(req.body)
const { url, status } = req.body
if (!url) return res.json({ success: false, message: 'Required an url!' })
if (!status) return res.json({ success: false, message: 'Required an status text!' })
if(status !== apikey) return res.json({ success: false, message: 'Invalid status!' })
const response = await sss_instagram(url)
res.json({
status: "ok",
result: response
})
} catch (e) {
console.log(e)
e = String(e)
res.json({ error: true, message: e === '[object Object]' ? 'Internal Server Error' : e })
}
})
app.post('/api/youtube/info', async (req, res) => {
try {
console.log(req.body)
const { url, status } = req.body
if (!url) return res.json({ success: false, message: 'Required an url!' })
if (!status) return res.json({ success: false, message: 'Required an status text!' })
if(status !== apikey) return res.json({ success: false, message: 'Invalid status!' })
const regex = url.split(/https:\/\/youtu(?:be\.com|\.be\/)/)[1].split("?")[0]
const response = await ytdl.getInfo(regex)
res.json({
status: "ok",
result: { ...response }
})
} catch (e) {
console.log(e)
e = String(e)
res.json({ error: true, message: e === '[object Object]' ? 'Internal Server Error' : e })
}
})
/*app.post('/tools/ddos', async (req, res) => {
try {
console.log(req.body)
const { url, interval, mount, status } = req.body
if (!url) return res.json({ success: false, message: 'Required an url!' })
if (!interval) return res.json({ success: false, message: 'Required an interval number!' })
if (!mount) return res.json({ success: false, message: 'Required an mount number!' })
if (!status) return res.json({ success: false, message: 'Required an status text!' })
if(status !== apikey) return res.json({ success: false, message: 'Invalid status!' })
const response = await Stress.start({
debug: true,
url: url,
interval: interval,
max: mount,
proxy: "./proxy.txt"
})
res.json({
status: "ok",
target: url,
interval: interval,
mount: mount,
response
})
} catch (e) {
console.log(e)
e = String(e)
res.json({ error: true, message: e === '[object Object]' ? 'Internal Server Error' : e })
}
})*/
app.post('/api/bingchat', async (req, res) => {
try {
console.log(req.body)
const { prompt, status } = req.body
if (!prompt) return res.json({ success: false, message: 'Required an prompt text!' })
if (!status) return res.json({ success: false, message: 'Required an status text!' })
if(status !== apikey) return res.json({ success: false, message: 'Invalid status!' })
const response = await axios.request({
method: "GET",
url: "https://aemt.me/bingai?text=" + prompt
})
res.json({
status: "ok",
result: response.data.result
})
} catch (e) {
console.log(e)
e = String(e)
res.json({ error: true, message: e === '[object Object]' ? 'Internal Server Error' : e })
}
})
app.post('/convert/zombie', async (req, res) => {
try {
console.log(req.body)
const { url, status } = req.body
if (!url) return res.json({ success: false, message: 'Required an url!' })
if (!status) return res.json({ success: false, message: 'Required an status text!' })
if(status !== apikey) return res.json({ success: false, message: 'Invalid status!' })
const resp = await axios.request({
method: "GET",
url: "https://aemt.me/converter/zombie?url=" + url
})
const response = await axios.request({
method: "GET",
url: resp.data.url,
contentType: "arraybuffer"
})
res.setHeader('Content-Type', 'image/jpeg')
res.send(response.data)
} catch (e) {
console.log(e)
e = String(e)
res.json({ error: true, message: e === '[object Object]' ? 'Internal Server Error' : e })
}
})
const PORT = process.env.PORT || 7860
app.listen(PORT, () => {
console.log('App running on port', PORT)
})
function formatSize(num) {
return bytes(+num || 0, { unitSeparator: ' ' })
}
function isBase64(str) {
try {
return btoa(atob(str)) === str
} catch {
return false
}
}
function toPDF(urls) {
return new Promise(async (resolve, reject) => {
try {
if (!Array.isArray(urls)) urls = [urls]
const doc = new PDFDocument({ margin: 0, size: 'A4' })
const buffers = []
for (let i = 0; i < urls.length; i++) {
const response = await fetch(urls[i], { headers: { referer: urls[i] }})
if (!response.ok) continue
const type = response.headers.get('content-type')
if (!/image/.test(type)) continue
let buffer = Buffer.from(await response.arrayBuffer())
if (/gif|webp/.test(type)) buffer = await sharp(buffer).png().toBuffer()
doc.image(buffer, 0, 0, { fit: [595.28, 841.89], align: 'center', valign: 'center' })
if (urls.length !== i + 1) doc.addPage()
}
doc.on('data', (chunk) => buffers.push(chunk))
doc.on('end', () => resolve(Buffer.concat(buffers)))
doc.on('error', reject)
doc.end()
} catch (e) {
console.log(e)
reject(e)
}
})
}
async function upscaleImage(imageBuffer) {
return new Promise(async (resolve, reject) => {
try {
const upscaler = new Upscaler();
const imageTensor = tfjs.tensor3d(new Uint8Array(imageBuffer), [imageBuffer.height, imageBuffer.width, 3]);
const upscaledTensor = await upscaler.upscale(imageTensor, {
scale: 4, // upscale by a factor of 4
sharpen: true, // apply sharpening
denoise: true, // apply denoising
contrast: 1.5, // increase contrast by 50%
colorEnhance: true, // enhance colors
});
const upscaledImageBuffer = await tfjs.tensor3dToBuffer(upscaledTensor);
// dispose the tensors!
imageTensor.dispose();
upscaledTensor.dispose();
resolve(upscaledImageBuffer);
} catch (error) {
reject(error);
}
});
}
async function upscaleImageV2(imageBuffer) {
return new Promise(async (resolve, reject) => {
try {
const upscale = await Waifu2X.upscale(imageBuffer, null, {
noise: 0,
scale: 2,
gpu: -1,
ramLimit: 500,
outputAsBuffer: true
});
upscale.finishedPromise().then(() => {
const outputBuffer = upscale.endBuffer;
resolve(outputBuffer); // ArrayBuffer
});
} catch(e) {
reject(e.message);
}
});
}
async function processImageUpscaler(images, denoise, format, type) {
return new Promise(async (resolve, reject) => {
try {
const formData = new FormData();
formData.append("denoise", denoise);
formData.append("scale", "true");
formData.append("format", format);
formData.append("type", type);
formData.append("file", images, {
filename:
"images_" + "downlaod.jpg",
contentType: "image/jpeg",
});
// Convert FormData to Buffer
// const bufferFormData = await formData.getBuffer();
const response = await axios.request({
method: "POST",
url: "https://api.alcaamado.es/ns-api-waifu2x/v1/convert",
data: formData,
debug: true,
headers: {
Authority: "api.alcaamado.es",
Accept: "application/json",
Referer: "https://waifu2x.pro/",
Origin: "https://waifu2x.pro",
"User-Agent":
"Mozilla/5.0 (Windows NT 10.0; Win64; x64) AppleWebKit/537.36 (KHTML, like Gecko) Chrome/120.0.0.0 Safari/537.36",
"Content-Type": `multipart/form-data; boundary=${formData._boundary}`,
},
});
const images = await axios.request({
method: "GET",
url:
"https://api.alcaamado.es/api/v2/waifu2x/get?hash=" +
response.data.hash +
"&type=" +
format,
headers: {
Accept: "image/webp,image/apng,image/svg+xml,image/*,*/*;q=0.8",
"Content-Type": "image/jpg",
Referer: "https://waifu2x.pro/",
"User-Agent":
"Mozilla/5.0 (Windows NT 10.0; Win64; x64) AppleWebKit/537.36 (KHTML, like Gecko) Chrome/120.0.0.0 Safari/537.36",
},
responseType: "arraybuffer",
});
resolve(images.data)
} catch (error) {
reject(error);
}
});
}
async function processImage2Img(imgBuffer, prompt) {
const FormData = require('formdata-node');
const Blob = require('formdata-node/Blob');
const type = fileType(imgBuffer);
const convertingBlob = new Blob([imgBuffer], { type: type.mime });
const form = new FormData();
form.append('image', convertingBlob, "image" + type.ext);
const app = await Client.connect("Manjushri/SDXL-Turbo-Img2Img-CPU");
const result = await app.predict("/predict", [
form, // blob in 'Raw Image.' Image component
prompt, // string in 'Prompt Input Text. 77 Token (Keyword or Symbol) Maximum' Textbox component
1, // number (numeric value between 1 and 5) in 'Number of Iterations' Slider component
0, // number (numeric value between 0 and 987654321987654321) in 'Seed' Slider component
0.1, // number (numeric value between 0.1 and 1) in 'Strength' Slider component
]);
}
async function processImageAnime(inputBuffer) {
try {
// const base64String = Buffer.from(inputBuffer, 'binary').toString('base64');
const apiResponse = await axios.post('https://www.drawever.com/api/photo-to-anime', {
data: `data:image/png;base64,${inputBuffer}`,
}, {
headers: {
'Content-Type': 'application/json',
},
});
const link = 'https://www.drawever.com' + (apiResponse.data.urls[1] || apiResponse.data.urls[0]);
const {
data: imageBuffer
} = await axios.get(link, {
responseType: 'arraybuffer'
});
const image = await Jimp.read(imageBuffer);
const blackBackground = new Jimp(image.bitmap.width, 50, 0x000000FF);
const font = await Jimp.loadFont(Jimp.FONT_SANS_16_WHITE);
blackBackground.print(font, 10, 10, "SadTeams", blackBackground.bitmap.width - 20);
image.composite(blackBackground, 0, image.bitmap.height - blackBackground.bitmap.height, {
mode: Jimp.BLEND_SOURCE_OVER,
opacityDest: 0.5,
opacitySource: 1
});
const outputBuffer = await image.getBufferAsync(Jimp.MIME_JPEG);
return outputBuffer;
} catch (err) {
console.error(err);
throw err;
}
}
async function check_nsfw(buffer) {
let _model = await load_model()
const convert = async (img) => {
// Decoded image in UInt8 Byte array
const image = await jpegjs.decode(img, { useTArray: true })
const numChannels = 3
const numPixels = image.width * image.height
const values = new Int32Array(numPixels * numChannels)
for (let i = 0; i < numPixels; i++)
for (let c = 0; c < numChannels; ++c)
values[i * numChannels + c] = image.data[i * 4 + c]
return tfjs.tensor3d(values, [image.height, image.width, numChannels], 'int32')
}
const image = await convert(buffer)
const predictions = await _model.classify(image)
image.dispose();
const results = predictions.map(v => {
return {
class_name: v.className,
probability: v.probability,
probability_percent: (v.probability * 100).toFixed(2)
}
})
return results
}
async function load_model() {
return await nsfwjs.load()
} |