File size: 27,034 Bytes
095af13
 
 
 
 
 
2fb0118
84574b6
f1ee166
87c3c2a
ba5feca
87c3c2a
51ed446
e1448ba
38f35ec
bf7bbab
c0ed78f
0eb04e4
c1c578d
2b4621b
85ce074
7a0283e
095af13
 
 
 
bea0315
 
22d0bb6
 
3597a5d
22d0bb6
095af13
 
 
 
 
 
 
 
 
06bf79a
 
095af13
 
2201892
9494916
095af13
 
 
 
 
 
 
 
 
 
 
 
59f11b4
095af13
 
 
 
 
 
 
 
 
 
58d61a1
 
 
 
 
 
 
 
7a0283e
1cce22e
c0ed78f
 
 
 
c1c578d
 
c0ed78f
c1c578d
 
 
 
 
 
 
 
 
 
 
 
 
 
58d61a1
 
 
 
 
 
7a0283e
 
 
d5c31be
7a0283e
 
a014c9f
7a0283e
 
 
 
 
 
 
 
d5c31be
7a0283e
 
 
 
 
 
 
8dd1a05
 
 
a014c9f
 
 
8dd1a05
 
 
 
c0ed78f
8dd1a05
685d9ff
 
 
 
 
11cf37d
 
8dd1a05
 
 
 
 
 
4166bc4
2af4d6d
 
894af86
9f8372e
1ba44fd
 
2af4d6d
1ba44fd
2af4d6d
 
 
5af4057
9f8372e
 
52f5da4
 
9f8372e
ec82333
13e1204
 
9f8372e
45b4d1a
e31ea68
13e1204
 
45b4d1a
9f8372e
45b4d1a
 
 
9f8372e
2af4d6d
 
 
 
0b4abe4
 
ec82333
 
 
5035a76
ec82333
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
e1a2ed8
bf7bbab
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
557f10b
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
afb4251
8b029c2
 
afb4251
8b029c2
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
87c3c2a
 
 
 
 
 
 
 
 
 
 
 
 
 
 
e30d518
 
 
 
87c3c2a
38f35ec
f12a8d4
38f35ec
 
 
 
 
 
 
 
85ce074
38f35ec
 
 
 
 
 
87c3c2a
 
 
 
 
 
 
 
 
 
 
2b4621b
4deaaad
 
 
2b4621b
4deaaad
 
 
2b4621b
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
4deaaad
 
 
 
 
 
 
 
 
 
f1ee166
 
 
 
 
 
 
 
1bf57b4
1671f43
f1ee166
 
1671f43
f1ee166
 
 
 
 
 
 
c0ed78f
113044c
b732370
0a46698
b732370
0a46698
b732370
 
 
 
113044c
0a46698
 
 
 
2e793f8
113044c
 
 
 
 
 
 
 
 
 
 
 
 
c0ed78f
 
0b4abe4
 
 
 
 
 
 
c0ed78f
 
 
0b4abe4
 
 
c0ed78f
0b4abe4
 
 
 
 
2af4d6d
c0ed78f
985e15b
 
 
 
 
 
 
 
8ff824e
82fd672
 
 
985e15b
 
0385117
985e15b
 
8ff824e
 
985e15b
 
 
 
 
 
58d61a1
095af13
3f43266
211b824
bcaeb16
095af13
 
4ca849c
095af13
87c3c2a
 
 
 
 
 
 
095af13
 
 
 
 
 
 
4ca849c
ceeb8a8
4ca849c
095af13
 
4ca849c
095af13
 
 
 
 
4ca849c
 
095af13
 
 
 
 
 
 
 
 
 
8c53df2
2af4d6d
9c632f4
1e87b46
 
 
d557945
ec82333
284e8b8
1e87b46
 
 
 
 
 
1ba44fd
e8f973d
1ba44fd
1e87b46
284e8b8
 
 
1e87b46
 
 
 
ec82333
 
bf7bbab
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
ec82333
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
5af4057
894af86
9a1876e
557f10b
 
9a1876e
 
557f10b
 
 
9a1876e
 
 
557f10b
 
9a1876e
 
 
 
 
 
8b029c2
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
9a1876e
 
87c3c2a
1f10f3f
3dd73af
 
51ed446
3dd73af
 
 
 
 
 
 
 
 
7f476e3
a1c6dd2
3dd73af
211b824
a8b15f5
7e84ef0
e30d518
 
 
 
 
87c3c2a
e30d518
211b824
 
e8434c9
7a0283e
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
const os = require('os')
const bytes = require('bytes')
const sharp = require('sharp')
const morgan = require('morgan')
const express = require('express')
const PDFDocument = require('pdfkit')
const axios = require("axios")
const FormData = require("form-data")
const ytdl = require('ytdl-core')
const tfjs = require('@tensorflow/tfjs-node')
const Upscaler = require('upscaler/node')
const nsfwjs = require('nsfwjs')
const jpegjs = require('jpeg-js')
const Jimp = require('jimp')
const fileType = require("file-type")
const Waifu2X = require('@ibaraki-douji/waifu2x')
//const Stress = require('./lib/ddos.js');
//const { BingChat } = (await import("bing-chat")).default
const { acytoo, chatgpt_4 } = require("./lib/chatgpt.js")
const { sss_instagram, gramvio } = require("./lib/instagram.js")
const { allToJpg } = require("./lib/convertFormat.js")
const apikey = "@SadTeam77"

const app = express()
app.set('json spaces', 4)
app.use(morgan('dev'))
app.use(express.json({ limit: "500mb" }))
app.use(express.urlencoded({ limit: '500mb', extended: true }))
app.use((req, res, next) => {
  load_model(),
  next()
})

app.all('/', (req, res) => {
	const status = {}
	const used = process.memoryUsage()
	for (let key in used) status[key] = formatSize(used[key])
	
	const totalmem = os.totalmem()
	const freemem = os.freemem()
	status.memoryUsage = `${formatSize(totalmem - freemem)} / ${formatSize(totalmem)}`

    console.log("YOUR IP: " + req.ip)
	
	res.json({
		creator: "@SadTeams",
		message: 'Hello World!!',
		uptime: new Date(process.uptime() * 1000).toUTCString().split(' ')[4],
		status
	})
})

app.post('/imagetopdf', async (req, res) => {
	try {
		console.log(req.body)
		const { images } = req.body
		if (!images) return res.json({ success: false, message: 'Required an array image url' })
		
		const buffer = await toPDF(images)
		res.setHeader('Content-Disposition', `attachment; filename=${Math.random().toString(36).slice(2)}.pdf`)
		res.setHeader('Content-Type', 'application/pdf')
		res.setHeader('Content-Length', buffer.byteLength)
		res.send(buffer)
	} catch (e) {
		console.log(e)
		e = String(e)
		res.json({ error: true, message: e === '[object Object]' ? 'Internal Server Error' : e })
	}
})

app.post('/api/chatgpt', async (req, res) => {
	try {
		console.log(req.body)
		const { prompt, model, status } = req.body
		if (!prompt) return res.json({ success: false, message: 'Required an prompt text!' })
        if (!model) return res.json({ success: false, message: 'Required an model version!' })
        if (!status) return res.json({ success: false, message: 'Required an prompt text!' })

        if(status !== apikey) return res.json({ success: false, message: 'Invalid status!' })
        if(model == "gpt-4") {
          const response = await axios.request({
            method: "GET",
            url: "https://aemt.me/gpt4?text=" + prompt
          })
          res.json({
            status: "ok",
            result: response.data.result
          })
        } else if(model == "gpt-3.5") {
          const response = await acytoo(prompt, "gpt-4")
          res.json({
            status: "ok",
            result: response
          })
        } else if(model == "gpt-3") {
          const response = await acytoo(prompt, "gpt-3.5-turbo")
          res.json({
            status: "ok",
            result: response
          })
        }
	} catch (e) {
		console.log(e)
		e = String(e)
		res.json({ error: true, message: e === '[object Object]' ? 'Internal Server Error' : e })
	}
})
app.post('/api/chatgpt2', async (req, res) => {
	try {
		console.log(req.body)
		const { data, prompt, status } = req.body
        if (!data) return res.json({ success: false, message: 'Required an data text!' })
		if (!prompt) return res.json({ success: false, message: 'Required an prompt text!' })
        if (!status) return res.json({ success: false, message: 'Required an status text!' })

        if(status !== apikey) return res.json({ success: false, message: 'Invalid status!' })
		const response = await axios.request({
          method: "GET",
          url: `https://aemt.me/prompt/gpt?prompt=${data}&text=${prompt}`
        })
        res.json({
          status: "ok",
          result: response.data.result
        })
	} catch (e) {
		console.log(e)
		e = String(e)
		res.json({ error: true, message: e === '[object Object]' ? 'Internal Server Error' : e })
	}
})
app.post('/api/toanime', async (req, res) => {
	try {
		console.log(req.body)
		const { url, status } = req.body
        if (!url) return res.json({ success: false, message: 'Required an url!' })
        if (!status) return res.json({ success: false, message: 'Required an status text!' })

        if(status !== apikey) return res.json({ success: false, message: 'Invalid status!' })
		const response = await axios.request({
          method: "GET",
          url: "https://aemt.me/toanime?url=" + url
        })
        const image = await axios.request({
          method: "GET", 
          url: response.data.url.img_crop_single,
          responseType: "arraybuffer" 
        })
        res.setHeader('Content-Type', 'image/jpeg')
        res.send(image.data)
	} catch (e) {
		console.log(e)
		e = String(e)
		res.json({ error: true, message: e === '[object Object]' ? 'Internal Server Error' : e })
	}
})
app.post('/api/upscaler', async (req, res) => {
	try {
		console.log(req.body)
		const { images, denoise, scale, format, type, status } = req.body
        if (!images) return res.json({ success: false, message: 'Required an images!' })
        if (!denoise) return res.json({ success: false, message: 'Required an denoise!' })
        if (!scale) return res.json({ success: false, message: 'Required an images!' })
        if (!format) return res.json({ success: false, message: 'Required an format size!' })
        if (!type) return res.json({ success: false, message: 'Required an images!' })
        if (!status) return res.json({ success: false, message: 'Required an status text!' })

        if(status !== apikey) return res.json({ success: false, message: 'Invalid status!' })
        if (/^(https?|http):\/\//i.test(images)) {
          const data_img = await axios.request({
            method: "GET",
            url: images,
            responseType: "arraybuffer"
          })
          const response = await processImageUpscaler(data_img.data, denoise, scale, format, type)
          const type_img = await fileType.fromBuffer(response)
          res.setHeader('Content-Type', type_img.mime)
          res.send(response)
        } else if (images && typeof images == 'string' && isBase64(images)) {
	   	  const response = await processImage(Buffer.from(images, "base64"), denoise, scale, format, type)
          const type_img = await fileType.fromBuffer(response)
          res.setHeader('Content-Type', type_img.mime)
          res.send(response)
        } else {
          res.json({
            success: false, message: 'No url or base64 detected!!' 
          })
        }
	} catch (e) {
		console.log(e)
		e = String(e)
		res.json({ error: true, message: e === '[object Object]' ? 'Internal Server Error' : e })
	}
})
app.post('/api/upscaler2', async (req, res) => {
	try {
		console.log(req.body)
		const { images, status } = req.body
        if (!images) return res.json({ success: false, message: 'Required an images!' })
        if (!status) return res.json({ success: false, message: 'Required an status text!' })

        if(status !== apikey) return res.json({ success: false, message: 'Invalid status!' })
        if (/^(https?|http):\/\//i.test(images)) {
          const data_img = await axios.request({
            method: "GET",
            url: images,
            responseType: "arraybuffer"
          })
          const response = await upscaleImage(data_img.data)
          const type_img = await fileType.fromBuffer(response)
          res.setHeader('Content-Type', type_img.mime)
          res.send(response)
        } else if (images && typeof images == 'string' && isBase64(images)) {
	   	  const response = await upscaleImage(Buffer.from(images, "base64"))
          const type_img = await fileType.fromBuffer(response)
          res.setHeader('Content-Type', type_img.mime)
          res.send(response)
        } else {
          res.json({
            success: false, message: 'No url or base64 detected!!' 
          })
        }
	} catch (e) {
		console.log(e)
		e = String(e)
		res.json({ error: true, message: e === '[object Object]' ? 'Internal Server Error' : e })
	}
})
app.post('/api/upscaler3', async (req, res) => {
	try {
		console.log(req.body)
		const { images, status } = req.body
        if (!images) return res.json({ success: false, message: 'Required an images!' })
        if (!status) return res.json({ success: false, message: 'Required an status text!' })

        if(status !== apikey) return res.json({ success: false, message: 'Invalid status!' })
        if (/^(https?|http):\/\//i.test(images)) {
          const data_img = await axios.request({
            method: "GET",
            url: images,
            responseType: "arraybuffer"
          })
          const response = await upscaleImageV2(data_img.data)
          const type_img = await fileType.fromBuffer(response)
          res.setHeader('Content-Type', type_img.mime)
          res.send(response)
        } else if (images && typeof images == 'string' && isBase64(images)) {
	   	  const response = await upscaleImageV2(Buffer.from(images, "base64"))
          const type_img = await fileType.fromBuffer(response)
          res.setHeader('Content-Type', type_img.mime)
          res.send(response)
        } else {
          res.json({
            success: false, message: 'No url or base64 detected!!' 
          })
        }
	} catch (e) {
		console.log(e)
		e = String(e)
		res.json({ error: true, message: e === '[object Object]' ? 'Internal Server Error' : e })
	}
})
app.post('/api/', async (req, res) => {
	try {
		console.log(req.body)
		const { images, status } = req.body
        if (!images) return res.json({ success: false, message: 'Required an images!' })
        if (!status) return res.json({ success: false, message: 'Required an status text!' })

        if(status !== apikey) return res.json({ success: false, message: 'Invalid status!' })
        if (/^(https?|http):\/\//i.test(images)) {
          const data_img = await axios.request({
            method: "GET",
            url: images,
            responseType: "arraybuffer"
          })
          const response = await upscaleImageV2(data_img.data)
          const type_img = await fileType.fromBuffer(response)
          res.setHeader('Content-Type', type_img.mime)
          res.send(response)
        } else if (images && typeof images == 'string' && isBase64(images)) {
	   	  const response = await upscaleImageV2(Buffer.from(images, "base64"))
          const type_img = await fileType.fromBuffer(response)
          res.setHeader('Content-Type', type_img.mime)
          res.send(response)
        } else {
          res.json({
            success: false, message: 'No url or base64 detected!!' 
          })
        }
	} catch (e) {
		console.log(e)
		e = String(e)
		res.json({ error: true, message: e === '[object Object]' ? 'Internal Server Error' : e })
	}
})
app.post('/api/toanime2', async (req, res) => {
	try {
		console.log(req.body)
		const { status, images } = req.body
        if (!images) return res.json({ success: false, message: 'Required an images!' })
        if (!status) return res.json({ success: false, message: 'Required an status text!' })

        if(status !== apikey) return res.json({ success: false, message: 'Invalid status!' })
        if (/^(https?|http):\/\//i.test(images)) {
          const data_img = await axios.request({
            method: "GET",
            url: images,
            responseType: "arraybuffer"
          })
          const imageBase64 = Buffer.from(data_img.data, 'binary').toString('base64');
          const response = await processImageAnime(imageBase64);
          const type_img = await fileType.fromBuffer(response)
          res.setHeader('Content-Type', type_img.mime)
          res.send(response)
        } else if (images && typeof images == 'string' && isBase64(images)) {
	   	  const response = await processImageAnime(images)
          const type_img = await fileType.fromBuffer(response)
          res.setHeader('Content-Type', type_img.mime)
          res.send(response)
        } else {
          res.json({
            success: false, message: 'No url or base64 detected!!' 
          })
        }
	} catch (e) {
		console.log(e)
		e = String(e)
		res.json({ error: true, message: e === '[object Object]' ? 'Internal Server Error' : e })
	}
})
app.post('/api/nsfw-check', async (req, res) => {
	try {
		console.log(req.body)
		const { images, status } = req.body
        if (!images) return res.json({ success: false, message: 'Required an images!' })
        if (!status) return res.json({ success: false, message: 'Required an status text!' })

        if(status !== apikey) return res.json({ success: false, message: 'Invalid status!' })
        if (/^(https?|http):\/\//i.test(images)) {
          const data_img = await axios.request({
            method: "GET",
            url: images,
            responseType: "arraybuffer"
          })
          const response = await check_nsfw(data_img.data)
          res.json({
            status: "ok",
            result: response
          })
        } else if (images && typeof images == 'string' && isBase64(images)) {
	   	  const img = Buffer.from(images, "base64")
          const type = await fileType.fromBuffer(img)
          if (type.ext == "jpg") {
            let response = await check_nsfw(img)
            res.json({
              status: "ok",
              result: response
            })
          }
          if (type.ext == "webp") {
            let converting = await allToJpg(img)
            let response = await check_nsfw(converting)
            res.json({
              status: "ok",
              result: response
            })
          }
        } else {
          res.json({
            success: false, message: 'No url or base64 detected!!' 
          })
        }
	} catch (e) {
		console.log(e)
		e = String(e)
		res.json({ error: true, message: e === '[object Object]' ? 'Internal Server Error' : e })
	}
})
app.post('/api/instagram/stalk', async (req, res) => {
	try {
		console.log(req.body)
		const { username, status } = req.body
        if (!username) return res.json({ success: false, message: 'Required an username text!' })
        if (!status) return res.json({ success: false, message: 'Required an status text!' })

        if(status !== apikey) return res.json({ success: false, message: 'Invalid status!' })
		const response = await gramvio(username)
        res.json({
          status: "ok",
          result: response
        })
	} catch (e) {
		console.log(e)
		e = String(e)
		res.json({ error: true, message: e === '[object Object]' ? 'Internal Server Error' : e })
	}
})
app.post('/api/instagram/download', async (req, res) => {
	try {
		console.log(req.body)
		const { url, status } = req.body
        if (!url) return res.json({ success: false, message: 'Required an url!' })
        if (!status) return res.json({ success: false, message: 'Required an status text!' })

        if(status !== apikey) return res.json({ success: false, message: 'Invalid status!' })
		const response = await sss_instagram(url)
        res.json({
          status: "ok",
          result: response
        })
	} catch (e) {
		console.log(e)
		e = String(e)
		res.json({ error: true, message: e === '[object Object]' ? 'Internal Server Error' : e })
	}
})
app.post('/api/youtube/info', async (req, res) => {
	try {
		console.log(req.body)
		const { url, status } = req.body
        if (!url) return res.json({ success: false, message: 'Required an url!' })
        if (!status) return res.json({ success: false, message: 'Required an status text!' })

        if(status !== apikey) return res.json({ success: false, message: 'Invalid status!' })
        const regex = url.split(/https:\/\/youtu(?:be\.com|\.be\/)/)[1].split("?")[0]
		const response = await ytdl.getInfo(regex)
        res.json({
          status: "ok",
          result: { ...response }
        })
	} catch (e) {
		console.log(e)
		e = String(e)
		res.json({ error: true, message: e === '[object Object]' ? 'Internal Server Error' : e })
	}
})
/*app.post('/tools/ddos', async (req, res) => {
	try {
		console.log(req.body)
		const { url, interval, mount, status } = req.body
        if (!url) return res.json({ success: false, message: 'Required an url!' })
        if (!interval) return res.json({ success: false, message: 'Required an interval number!' })
        if (!mount) return res.json({ success: false, message: 'Required an mount number!' })
        if (!status) return res.json({ success: false, message: 'Required an status text!' })

        if(status !== apikey) return res.json({ success: false, message: 'Invalid status!' })
		const response = await Stress.start({
          debug: true,
          url: url,
          interval: interval,
          max: mount,
          proxy: "./proxy.txt"
        })
      res.json({
        status: "ok",
        target: url,
        interval: interval,
        mount: mount,
        response
      })
	} catch (e) {
		console.log(e)
		e = String(e)
		res.json({ error: true, message: e === '[object Object]' ? 'Internal Server Error' : e })
	}
})*/
app.post('/api/bingchat', async (req, res) => {
	try {
		console.log(req.body)
		const { prompt, status } = req.body
        if (!prompt) return res.json({ success: false, message: 'Required an prompt text!' })
        if (!status) return res.json({ success: false, message: 'Required an status text!' })

        if(status !== apikey) return res.json({ success: false, message: 'Invalid status!' })
		const response = await axios.request({
          method: "GET",
          url: "https://aemt.me/bingai?text=" + prompt
        })
        res.json({
          status: "ok",
          result: response.data.result
        })
	} catch (e) {
		console.log(e)
		e = String(e)
		res.json({ error: true, message: e === '[object Object]' ? 'Internal Server Error' : e })
	}
})
app.post('/convert/zombie', async (req, res) => {
	try {
		console.log(req.body)
		const { url, status } = req.body
        if (!url) return res.json({ success: false, message: 'Required an url!' })
        if (!status) return res.json({ success: false, message: 'Required an status text!' })

        if(status !== apikey) return res.json({ success: false, message: 'Invalid status!' })
        const resp = await axios.request({
          method: "GET",
          url: "https://aemt.me/converter/zombie?url=" + url
        })
        const response = await axios.request({
          method: "GET",
          url: resp.data.url,
          contentType: "arraybuffer"
        })
        res.setHeader('Content-Type', 'image/jpeg')
        res.send(response.data)
	} catch (e) {
		console.log(e)
		e = String(e)
		res.json({ error: true, message: e === '[object Object]' ? 'Internal Server Error' : e })
	}
})

const PORT = process.env.PORT || 7860
app.listen(PORT, () => {
  console.log('App running on port', PORT)
})                         

function formatSize(num) {
	return bytes(+num || 0, { unitSeparator: ' ' })
}
function isBase64(str) {
	try {
		return btoa(atob(str)) === str
	} catch {
		return false
	}
}
function toPDF(urls) {
	return new Promise(async (resolve, reject) => {
		try {
			if (!Array.isArray(urls)) urls = [urls]
			const doc = new PDFDocument({ margin: 0, size: 'A4' })
			const buffers = []
			
			for (let i = 0; i < urls.length; i++) {
				const response = await fetch(urls[i], { headers: { referer: urls[i] }})
				if (!response.ok) continue
				
				const type = response.headers.get('content-type')
				if (!/image/.test(type)) continue
				
				let buffer = Buffer.from(await response.arrayBuffer())
				if (/gif|webp/.test(type)) buffer = await sharp(buffer).png().toBuffer()
				
				doc.image(buffer, 0, 0, { fit: [595.28, 841.89], align: 'center', valign: 'center' })
				if (urls.length !== i + 1) doc.addPage()
			}
			
			doc.on('data', (chunk) => buffers.push(chunk))
			doc.on('end', () => resolve(Buffer.concat(buffers)))
			doc.on('error', reject)
			doc.end()
		} catch (e) {
			console.log(e)
			reject(e)
		}
	})
}

async function upscaleImage(imageBuffer) {
  return new Promise(async (resolve, reject) => {
      try {
        const upscaler = new Upscaler();
        const imageTensor = tfjs.tensor3d(new Uint8Array(imageBuffer), [imageBuffer.height, imageBuffer.width, 3]);

        const upscaledTensor = await upscaler.upscale(imageTensor, {
          scale: 4, // upscale by a factor of 4
          sharpen: true, // apply sharpening
          denoise: true, // apply denoising
          contrast: 1.5, // increase contrast by 50%
          colorEnhance: true, // enhance colors
        });

        const upscaledImageBuffer = await tfjs.tensor3dToBuffer(upscaledTensor);

        // dispose the tensors!
        imageTensor.dispose();
        upscaledTensor.dispose();
        resolve(upscaledImageBuffer);
      } catch (error) {
        reject(error);
      }
    });
}

async function upscaleImageV2(imageBuffer) {
  return new Promise(async (resolve, reject) => {
    try {
      const upscale = await Waifu2X.upscale(imageBuffer, null, {
        noise: 0,
        scale: 2,
        gpu: -1,
        ramLimit: 500,
        outputAsBuffer: true
      });

      upscale.finishedPromise().then(() => {
        const outputBuffer = upscale.endBuffer;
        resolve(outputBuffer); // ArrayBuffer
      });
    } catch(e) {
      reject(e.message);
    }
  });
}

async function processImageUpscaler(images, denoise, format, type) {
    return new Promise(async (resolve, reject) => {
      try {
        const formData = new FormData();
        formData.append("denoise", denoise);
        formData.append("scale", "true");
        formData.append("format", format);
        formData.append("type", type);
        formData.append("file", images, {
          filename:
            "images_" + "downlaod.jpg",
          contentType: "image/jpeg",
        });

        // Convert FormData to Buffer
       // const bufferFormData = await formData.getBuffer();

        const response = await axios.request({
          method: "POST",
          url: "https://api.alcaamado.es/ns-api-waifu2x/v1/convert",
          data: formData,
          debug: true,
          headers: {
            Authority: "api.alcaamado.es",
            Accept: "application/json",
            Referer: "https://waifu2x.pro/",
            Origin: "https://waifu2x.pro",
            "User-Agent":
              "Mozilla/5.0 (Windows NT 10.0; Win64; x64) AppleWebKit/537.36 (KHTML, like Gecko) Chrome/120.0.0.0 Safari/537.36",
            "Content-Type": `multipart/form-data; boundary=${formData._boundary}`,
          },
        });

        const images = await axios.request({
          method: "GET",
          url:
            "https://api.alcaamado.es/api/v2/waifu2x/get?hash=" +
            response.data.hash +
            "&type=" +
            format,
          headers: {
            Accept: "image/webp,image/apng,image/svg+xml,image/*,*/*;q=0.8",
            "Content-Type": "image/jpg",
            Referer: "https://waifu2x.pro/",
            "User-Agent":
              "Mozilla/5.0 (Windows NT 10.0; Win64; x64) AppleWebKit/537.36 (KHTML, like Gecko) Chrome/120.0.0.0 Safari/537.36",
          },
          responseType: "arraybuffer",
        });

        resolve(images.data)
      } catch (error) {
        reject(error);
      }
    });
}

async function processImage2Img(imgBuffer, prompt) {
  const FormData = require('formdata-node');
  const Blob = require('formdata-node/Blob');
  const type = fileType(imgBuffer);
  const convertingBlob = new Blob([imgBuffer], { type: type.mime });

  const form = new FormData();
  form.append('image', convertingBlob, "image" + type.ext);
						
  const app = await Client.connect("Manjushri/SDXL-Turbo-Img2Img-CPU");
  const result = await app.predict("/predict", [
				  form, 	// blob in 'Raw Image.' Image component		
				  prompt, // string  in 'Prompt Input Text. 77 Token (Keyword or Symbol) Maximum' Textbox component		
				  1, // number (numeric value between 1 and 5) in 'Number of Iterations' Slider component		
				  0, // number (numeric value between 0 and 987654321987654321) in 'Seed' Slider component		
				  0.1, // number (numeric value between 0.1 and 1) in 'Strength' Slider component
  ]);
}

async function processImageAnime(inputBuffer) {
    try {
       // const base64String = Buffer.from(inputBuffer, 'binary').toString('base64');
        const apiResponse = await axios.post('https://www.drawever.com/api/photo-to-anime', {
            data: `data:image/png;base64,${inputBuffer}`,
        }, {
            headers: {
                'Content-Type': 'application/json',
            },
        });

        const link = 'https://www.drawever.com' + (apiResponse.data.urls[1] || apiResponse.data.urls[0]);
        const {
            data: imageBuffer
        } = await axios.get(link, {
            responseType: 'arraybuffer'
        });

        const image = await Jimp.read(imageBuffer);
        const blackBackground = new Jimp(image.bitmap.width, 50, 0x000000FF);
        const font = await Jimp.loadFont(Jimp.FONT_SANS_16_WHITE);
        blackBackground.print(font, 10, 10, "SadTeams", blackBackground.bitmap.width - 20);
        image.composite(blackBackground, 0, image.bitmap.height - blackBackground.bitmap.height, {
            mode: Jimp.BLEND_SOURCE_OVER,
            opacityDest: 0.5,
            opacitySource: 1
        });

        const outputBuffer = await image.getBufferAsync(Jimp.MIME_JPEG);
        return outputBuffer;
    } catch (err) {
        console.error(err);
        throw err;
    }
}



async function check_nsfw(buffer) {
  let _model = await load_model()
  const convert = async (img) => {
  // Decoded image in UInt8 Byte array
    const image = await jpegjs.decode(img, { useTArray: true })

    const numChannels = 3
    const numPixels = image.width * image.height
    const values = new Int32Array(numPixels * numChannels)

    for (let i = 0; i < numPixels; i++)
      for (let c = 0; c < numChannels; ++c)
        values[i * numChannels + c] = image.data[i * 4 + c]

    return tfjs.tensor3d(values, [image.height, image.width, numChannels], 'int32')
  }
  const image = await convert(buffer)
  const predictions = await _model.classify(image)
  image.dispose();
  const results = predictions.map(v => {
    return {
      class_name: v.className,
      probability: v.probability,
      probability_percent: (v.probability * 100).toFixed(2)
    }
  })
  return results
}
async function load_model() {
  return await nsfwjs.load()
}