File size: 12,372 Bytes
98a77e0
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
# Copyright (c) 2020-2022 NVIDIA CORPORATION & AFFILIATES. All rights reserved. 
#
# NVIDIA CORPORATION, its affiliates and licensors retain all intellectual
# property and proprietary rights in and to this material, related
# documentation and any modifications thereto. Any use, reproduction, 
# disclosure or distribution of this material and related documentation 
# without an express license agreement from NVIDIA CORPORATION or 
# its affiliates is strictly prohibited.

import os
import torch
import xatlas
import trimesh
import numpy as np
import cv2
import nvdiffrast.torch as dr
from video3d.render.render import render_uv
from video3d.render.mesh import Mesh
from . import texture
from . import mesh
from . import material

######################################################################################
# Utility functions
######################################################################################

def _find_mat(materials, name):
    for mat in materials:
        if mat['name'] == name:
            return mat
    return materials[0] # Materials 0 is the default

######################################################################################
# Create mesh object from objfile
######################################################################################

def load_obj(filename, clear_ks=True, mtl_override=None):
    obj_path = os.path.dirname(filename)

    # Read entire file
    with open(filename, 'r') as f:
        lines = f.readlines()

    # Load materials
    all_materials = [
        {
            'name' : '_default_mat',
            'bsdf' : 'pbr',
            'kd'   : texture.Texture2D(torch.tensor([0.5, 0.5, 0.5], dtype=torch.float32, device='cuda')),
            'ks'   : texture.Texture2D(torch.tensor([0.0, 0.0, 0.0], dtype=torch.float32, device='cuda'))
        }
    ]
    if mtl_override is None: 
        for line in lines:
            if len(line.split()) == 0:
                continue
            if line.split()[0] == 'mtllib':
                all_materials += material.load_mtl(os.path.join(obj_path, line.split()[1]), clear_ks) # Read in entire material library
    else:
        all_materials += material.load_mtl(mtl_override)

    # load vertices
    vertices, texcoords, normals  = [], [], []
    for line in lines:
        if len(line.split()) == 0:
            continue
        
        prefix = line.split()[0].lower()
        if prefix == 'v':
            vertices.append([float(v) for v in line.split()[1:]])
        elif prefix == 'vt':
            val = [float(v) for v in line.split()[1:]]
            texcoords.append([val[0], 1.0 - val[1]])
        elif prefix == 'vn':
            normals.append([float(v) for v in line.split()[1:]])

    # load faces
    activeMatIdx = None
    used_materials = []
    faces, tfaces, nfaces, mfaces = [], [], [], []
    for line in lines:
        if len(line.split()) == 0:
            continue

        prefix = line.split()[0].lower()
        if prefix == 'usemtl': # Track used materials
            mat = _find_mat(all_materials, line.split()[1])
            if not mat in used_materials:
                used_materials.append(mat)
            activeMatIdx = used_materials.index(mat)
        elif prefix == 'f': # Parse face
            vs = line.split()[1:]
            nv = len(vs)
            vv = vs[0].split('/')
            v0 = int(vv[0]) - 1
            t0 = int(vv[1]) - 1 if vv[1] != "" else -1
            n0 = int(vv[2]) - 1 if vv[2] != "" else -1
            for i in range(nv - 2): # Triangulate polygons
                vv = vs[i + 1].split('/')
                v1 = int(vv[0]) - 1
                t1 = int(vv[1]) - 1 if vv[1] != "" else -1
                n1 = int(vv[2]) - 1 if vv[2] != "" else -1
                vv = vs[i + 2].split('/')
                v2 = int(vv[0]) - 1
                t2 = int(vv[1]) - 1 if vv[1] != "" else -1
                n2 = int(vv[2]) - 1 if vv[2] != "" else -1
                mfaces.append(activeMatIdx)
                faces.append([v0, v1, v2])
                tfaces.append([t0, t1, t2])
                nfaces.append([n0, n1, n2])
    assert len(tfaces) == len(faces) and len(nfaces) == len (faces)

    # Create an "uber" material by combining all textures into a larger texture
    if len(used_materials) > 1:
        uber_material, texcoords, tfaces = material.merge_materials(used_materials, texcoords, tfaces, mfaces)
    else:
        uber_material = used_materials[0]

    vertices = torch.tensor(vertices, dtype=torch.float32, device='cuda')
    texcoords = torch.tensor(texcoords, dtype=torch.float32, device='cuda') if len(texcoords) > 0 else None
    normals = torch.tensor(normals, dtype=torch.float32, device='cuda') if len(normals) > 0 else None
    
    faces = torch.tensor(faces, dtype=torch.int64, device='cuda')
    tfaces = torch.tensor(tfaces, dtype=torch.int64, device='cuda') if texcoords is not None else None
    nfaces = torch.tensor(nfaces, dtype=torch.int64, device='cuda') if normals is not None else None

    return mesh.Mesh(vertices, faces, normals, nfaces, texcoords, tfaces, material=uber_material)

######################################################################################
# Save mesh object to objfile
######################################################################################

def write_obj(folder, fname, mesh, idx, save_material=True, feat=None, resolution=[256, 256]):
    obj_file = os.path.join(folder, fname + '.obj')
    print("Writing mesh: ", obj_file)
    with open(obj_file, "w") as f:
        f.write(f"mtllib {fname}.mtl\n")
        f.write("g default\n")

        v_pos = mesh.v_pos[idx].detach().cpu().numpy() if mesh.v_pos is not None else None
        v_nrm = mesh.v_nrm[idx].detach().cpu().numpy() if mesh.v_nrm is not None else None
        v_tex = mesh.v_tex[idx].detach().cpu().numpy() if mesh.v_tex is not None else None

        t_pos_idx = mesh.t_pos_idx[0].detach().cpu().numpy() if mesh.t_pos_idx is not None else None
        t_nrm_idx = mesh.t_nrm_idx[0].detach().cpu().numpy() if mesh.t_nrm_idx is not None else None
        t_tex_idx = mesh.t_tex_idx[0].detach().cpu().numpy() if mesh.t_tex_idx is not None else None

        print("    writing %d vertices" % len(v_pos))
        for v in v_pos:
            f.write('v {} {} {} \n'.format(v[0], v[1], v[2]))
       
        if v_tex is not None and save_material:
            print("    writing %d texcoords" % len(v_tex))
            assert(len(t_pos_idx) == len(t_tex_idx))
            for v in v_tex:
                f.write('vt {} {} \n'.format(v[0], 1.0 - v[1]))

        if v_nrm is not None:
            print("    writing %d normals" % len(v_nrm))
            assert(len(t_pos_idx) == len(t_nrm_idx))
            for v in v_nrm:
                f.write('vn {} {} {}\n'.format(v[0], v[1], v[2]))

        # faces
        f.write("s 1 \n")
        f.write("g pMesh1\n")
        f.write("usemtl defaultMat\n")

        # Write faces
        print("    writing %d faces" % len(t_pos_idx))
        for i in range(len(t_pos_idx)):
            f.write("f ")
            for j in range(3):
                f.write(' %s/%s/%s' % (str(t_pos_idx[i][j]+1), '' if v_tex is None else str(t_tex_idx[i][j]+1), '' if v_nrm is None else str(t_nrm_idx[i][j]+1)))
            f.write("\n")

    if save_material and mesh.material is not None:
        mtl_file = os.path.join(folder, fname + '.mtl')
        print("Writing material: ", mtl_file)
        material.save_mtl(mtl_file, mesh.material, mesh=mesh.get_n(idx), feat=feat, resolution=resolution)

    print("Done exporting mesh")


def write_textured_obj(folder, fname, mesh, idx, save_material=True, feat=None, resolution=[256, 256], prior_shape=None):
    mesh = mesh.get_n(idx)
    obj_file = os.path.join(folder, fname + '.obj')
    print("Writing mesh: ", obj_file)

    # Create uvs with xatlas
    v_pos = mesh.v_pos.detach().cpu().numpy()
    t_pos_idx = mesh.t_pos_idx.detach().cpu().numpy()

    # v_color = torch.Tensor(v_pos)[None].to("cuda")
    # v_color = mesh.material.sample(v_color, feat)
    # v_color = v_color[0,0,:,:3].detach().cpu()
    # v_color = torch.concat([v_color, torch.ones((v_color.shape[0], 1))], dim=-1)
    # v_color = v_color.numpy() * 255
    # v_color = v_color.astype(np.int32)
    # tmp = trimesh.Trimesh(vertices=v_pos[0], faces=t_pos_idx[0], vertex_colors=v_color)
    # _ = tmp.export("tmp.obj")
    # from pdb import set_trace; set_trace()

    atlas = xatlas.Atlas()
    atlas.add_mesh(
        v_pos[0],
        t_pos_idx[0],
    )
    co = xatlas.ChartOptions()
    po = xatlas.PackOptions()
    # for k, v in xatlas_chart_options.items():
    #     setattr(co, k, v)
    # for k, v in xatlas_pack_options.items():
    #     setattr(po, k, v)
    atlas.generate(co, po)
    vmapping, indices, uvs = atlas.get_mesh(0)
    # vmapping, indices, uvs = xatlas.parametrize(v_pos[0], t_pos_idx[0])

    # Convert to tensors
    indices_int64 = indices.astype(np.uint64, casting='same_kind').view(np.int64)
    
    uvs = torch.tensor(uvs, dtype=torch.float32, device='cuda')
    faces = torch.tensor(indices_int64, dtype=torch.int64, device='cuda')

    # new_mesh = Mesh(v_tex=uvs, t_tex_idx=faces, base=mesh)
    new_mesh = Mesh(v_tex=uvs[None], t_tex_idx=faces[None], base=mesh)

    # glctx = dr.RasterizeGLContext()
    # mask, kd, ks, normal = render_uv(glctx, new_mesh, resolution, mesh.material, feat=feat)

    # kd_min, kd_max = torch.tensor([ 0.0,  0.0,  0.0,  0.0], dtype=torch.float32, device='cuda'), torch.tensor([ 1.0,  1.0,  1.0,  1.0], dtype=torch.float32, device='cuda')
    # ks_min, ks_max = torch.tensor([ 0.0,  0.0,  0.0] , dtype=torch.float32, device='cuda'), torch.tensor([ 0.0,  0.0,  0.0] , dtype=torch.float32, device='cuda')
    # nrm_min, nrm_max = torch.tensor([-1.0, -1.0,  0.0], dtype=torch.float32, device='cuda'), torch.tensor([ 1.0,  1.0,  1.0], dtype=torch.float32, device='cuda')

    new_mesh.material = material.Material({
        'bsdf'   : 'diffuse',
        # 'kd'     : texture.Texture2D(kd, min_max=[kd_min, kd_max]),
        # 'ks'     : texture.Texture2D(ks, min_max=[ks_min, ks_max]),
        # 'normal' : texture.Texture2D(normal, min_max=[nrm_min, nrm_max]),
        'kd_ks_normal': mesh.material
    })

    with open(obj_file, "w") as f:
        f.write(f"mtllib {fname}.mtl\n")
        f.write("g default\n")

        v_pos = new_mesh.v_pos[idx].detach().cpu().numpy() if new_mesh.v_pos is not None else None
        v_nrm = new_mesh.v_nrm[idx].detach().cpu().numpy() if new_mesh.v_nrm is not None else None
        v_tex = new_mesh.v_tex[idx].detach().cpu().numpy() if new_mesh.v_tex is not None else None

        t_pos_idx = new_mesh.t_pos_idx[0].detach().cpu().numpy() if new_mesh.t_pos_idx is not None else None
        t_nrm_idx = new_mesh.t_nrm_idx[0].detach().cpu().numpy() if new_mesh.t_nrm_idx is not None else None
        t_tex_idx = new_mesh.t_tex_idx[0].detach().cpu().numpy() if new_mesh.t_tex_idx is not None else None

        print("    writing %d vertices" % len(v_pos))
        for v in v_pos:
            f.write('v {} {} {} \n'.format(v[0], v[1], v[2]))
       
        if v_tex is not None and save_material:
            print("    writing %d texcoords" % len(v_tex))
            assert(len(t_pos_idx) == len(t_tex_idx))
            for v in v_tex:
                f.write('vt {} {} \n'.format(v[0], 1.0 - v[1]))

        if v_nrm is not None:
            print("    writing %d normals" % len(v_nrm))
            assert(len(t_pos_idx) == len(t_nrm_idx))
            for v in v_nrm:
                f.write('vn {} {} {}\n'.format(v[0], v[1], v[2]))

        # faces
        f.write("s 1 \n")
        f.write("g pMesh1\n")
        f.write("usemtl defaultMat\n")

        # Write faces
        print("    writing %d faces" % len(t_pos_idx))
        for i in range(len(t_pos_idx)):
            f.write("f ")
            for j in range(3):
                f.write(' %s/%s/%s' % (str(t_pos_idx[i][j]+1), '' if v_tex is None else str(t_tex_idx[i][j]+1), '' if v_nrm is None else str(t_nrm_idx[i][j]+1)))
            f.write("\n")

    mtl_file = os.path.join(folder, fname + '.mtl')
    print("Writing material: ", mtl_file)
    material.save_mtl(mtl_file, new_mesh.material, mesh=new_mesh, feat=feat, resolution=resolution, prior_shape=prior_shape)

    print("Done exporting mesh")