File size: 6,274 Bytes
98a77e0
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
# Copyright (c) 2020-2022 NVIDIA CORPORATION & AFFILIATES. All rights reserved. 
#
# NVIDIA CORPORATION, its affiliates and licensors retain all intellectual
# property and proprietary rights in and to this material, related
# documentation and any modifications thereto. Any use, reproduction, 
# disclosure or distribution of this material and related documentation 
# without an express license agreement from NVIDIA CORPORATION or 
# its affiliates is strictly prohibited.

import math
import torch

NORMAL_THRESHOLD = 0.1

################################################################################
# Vector utility functions
################################################################################

def _dot(x, y):
    return torch.sum(x*y, -1, keepdim=True)

def _reflect(x, n):
    return 2*_dot(x, n)*n - x

def _safe_normalize(x):
    return torch.nn.functional.normalize(x, dim = -1)

def _bend_normal(view_vec, smooth_nrm, geom_nrm, two_sided_shading):
    # Swap normal direction for backfacing surfaces
    if two_sided_shading:
        smooth_nrm = torch.where(_dot(geom_nrm, view_vec) > 0, smooth_nrm, -smooth_nrm)
        geom_nrm   = torch.where(_dot(geom_nrm, view_vec) > 0, geom_nrm, -geom_nrm)

    t = torch.clamp(_dot(view_vec, smooth_nrm) / NORMAL_THRESHOLD, min=0, max=1)
    return torch.lerp(geom_nrm, smooth_nrm, t)


def _perturb_normal(perturbed_nrm, smooth_nrm, smooth_tng, opengl):
    smooth_bitang = _safe_normalize(torch.cross(smooth_tng, smooth_nrm, dim=-1))
    if opengl:
        shading_nrm = smooth_tng * perturbed_nrm[..., 0:1] - smooth_bitang * perturbed_nrm[..., 1:2] + smooth_nrm * torch.clamp(perturbed_nrm[..., 2:3], min=0.0)
    else:
        shading_nrm = smooth_tng * perturbed_nrm[..., 0:1] + smooth_bitang * perturbed_nrm[..., 1:2] + smooth_nrm * torch.clamp(perturbed_nrm[..., 2:3], min=0.0)
    return _safe_normalize(shading_nrm)

def bsdf_prepare_shading_normal(pos, view_pos, perturbed_nrm, smooth_nrm, smooth_tng, geom_nrm, two_sided_shading, opengl):
    smooth_nrm = _safe_normalize(smooth_nrm)
    smooth_tng = _safe_normalize(smooth_tng)
    view_vec   = _safe_normalize(view_pos - pos)
    shading_nrm = _perturb_normal(perturbed_nrm, smooth_nrm, smooth_tng, opengl)
    return _bend_normal(view_vec, shading_nrm, geom_nrm, two_sided_shading)

################################################################################
# Simple lambertian diffuse BSDF
################################################################################

def bsdf_lambert(nrm, wi):
    return torch.clamp(_dot(nrm, wi), min=0.0) / math.pi

################################################################################
# Frostbite diffuse
################################################################################

def bsdf_frostbite(nrm, wi, wo, linearRoughness):
    wiDotN = _dot(wi, nrm)
    woDotN = _dot(wo, nrm)

    h = _safe_normalize(wo + wi)
    wiDotH = _dot(wi, h)

    energyBias = 0.5 * linearRoughness
    energyFactor = 1.0 - (0.51 / 1.51) * linearRoughness
    f90 = energyBias + 2.0 * wiDotH * wiDotH * linearRoughness
    f0 = 1.0

    wiScatter = bsdf_fresnel_shlick(f0, f90, wiDotN)
    woScatter = bsdf_fresnel_shlick(f0, f90, woDotN)
    res = wiScatter * woScatter * energyFactor
    return torch.where((wiDotN > 0.0) & (woDotN > 0.0), res, torch.zeros_like(res))

################################################################################
# Phong specular, loosely based on mitsuba implementation
################################################################################

def bsdf_phong(nrm, wo, wi, N):
    dp_r = torch.clamp(_dot(_reflect(wo, nrm), wi), min=0.0, max=1.0)
    dp_l = torch.clamp(_dot(nrm, wi), min=0.0, max=1.0)
    return (dp_r ** N) * dp_l * (N + 2) / (2 * math.pi)

################################################################################
# PBR's implementation of GGX specular
################################################################################

specular_epsilon = 1e-4

def bsdf_fresnel_shlick(f0, f90, cosTheta):
    _cosTheta = torch.clamp(cosTheta, min=specular_epsilon, max=1.0 - specular_epsilon)
    return f0 + (f90 - f0) * (1.0 - _cosTheta) ** 5.0

def bsdf_ndf_ggx(alphaSqr, cosTheta):
    _cosTheta = torch.clamp(cosTheta, min=specular_epsilon, max=1.0 - specular_epsilon)
    d = (_cosTheta * alphaSqr - _cosTheta) * _cosTheta + 1
    return alphaSqr / (d * d * math.pi)

def bsdf_lambda_ggx(alphaSqr, cosTheta):
    _cosTheta = torch.clamp(cosTheta, min=specular_epsilon, max=1.0 - specular_epsilon)
    cosThetaSqr = _cosTheta * _cosTheta
    tanThetaSqr = (1.0 - cosThetaSqr) / cosThetaSqr
    res = 0.5 * (torch.sqrt(1 + alphaSqr * tanThetaSqr) - 1.0)
    return res

def bsdf_masking_smith_ggx_correlated(alphaSqr, cosThetaI, cosThetaO):
    lambdaI = bsdf_lambda_ggx(alphaSqr, cosThetaI)
    lambdaO = bsdf_lambda_ggx(alphaSqr, cosThetaO)
    return 1 / (1 + lambdaI + lambdaO)

def bsdf_pbr_specular(col, nrm, wo, wi, alpha, min_roughness=0.08):
    _alpha = torch.clamp(alpha, min=min_roughness*min_roughness, max=1.0)
    alphaSqr = _alpha * _alpha

    h = _safe_normalize(wo + wi)
    woDotN = _dot(wo, nrm)
    wiDotN = _dot(wi, nrm)
    woDotH = _dot(wo, h)
    nDotH  = _dot(nrm, h)

    D = bsdf_ndf_ggx(alphaSqr, nDotH)
    G = bsdf_masking_smith_ggx_correlated(alphaSqr, woDotN, wiDotN)
    F = bsdf_fresnel_shlick(col, 1, woDotH)

    w = F * D * G * 0.25 / torch.clamp(woDotN, min=specular_epsilon)

    frontfacing = (woDotN > specular_epsilon) & (wiDotN > specular_epsilon)
    return torch.where(frontfacing, w, torch.zeros_like(w))

def bsdf_pbr(kd, arm, pos, nrm, view_pos, light_pos, min_roughness, BSDF):
    wo = _safe_normalize(view_pos - pos)
    wi = _safe_normalize(light_pos - pos)

    spec_str  = arm[..., 0:1] # x component
    roughness = arm[..., 1:2] # y component
    metallic  = arm[..., 2:3] # z component
    ks = (0.04 * (1.0 - metallic) + kd * metallic) * (1 - spec_str)
    kd = kd * (1.0 - metallic)

    if BSDF == 0:
        diffuse = kd * bsdf_lambert(nrm, wi)
    else:
        diffuse = kd * bsdf_frostbite(nrm, wi, wo, roughness)
    specular = bsdf_pbr_specular(ks, nrm, wo, wi, roughness*roughness, min_roughness=min_roughness)
    return diffuse + specular