Spaces:
Runtime error
Runtime error
# Copyright (c) OpenMMLab. All rights reserved. | |
from mmcv.cnn import DepthwiseSeparableConvModule | |
from mmseg.registry import MODELS | |
from .fcn_head import FCNHead | |
class DepthwiseSeparableFCNHead(FCNHead): | |
"""Depthwise-Separable Fully Convolutional Network for Semantic | |
Segmentation. | |
This head is implemented according to `Fast-SCNN: Fast Semantic | |
Segmentation Network <https://arxiv.org/abs/1902.04502>`_. | |
Args: | |
in_channels(int): Number of output channels of FFM. | |
channels(int): Number of middle-stage channels in the decode head. | |
concat_input(bool): Whether to concatenate original decode input into | |
the result of several consecutive convolution layers. | |
Default: True. | |
num_classes(int): Used to determine the dimension of | |
final prediction tensor. | |
in_index(int): Correspond with 'out_indices' in FastSCNN backbone. | |
norm_cfg (dict | None): Config of norm layers. | |
align_corners (bool): align_corners argument of F.interpolate. | |
Default: False. | |
loss_decode(dict): Config of loss type and some | |
relevant additional options. | |
dw_act_cfg (dict):Activation config of depthwise ConvModule. If it is | |
'default', it will be the same as `act_cfg`. Default: None. | |
""" | |
def __init__(self, dw_act_cfg=None, **kwargs): | |
super().__init__(**kwargs) | |
self.convs[0] = DepthwiseSeparableConvModule( | |
self.in_channels, | |
self.channels, | |
kernel_size=self.kernel_size, | |
padding=self.kernel_size // 2, | |
norm_cfg=self.norm_cfg, | |
dw_act_cfg=dw_act_cfg) | |
for i in range(1, self.num_convs): | |
self.convs[i] = DepthwiseSeparableConvModule( | |
self.channels, | |
self.channels, | |
kernel_size=self.kernel_size, | |
padding=self.kernel_size // 2, | |
norm_cfg=self.norm_cfg, | |
dw_act_cfg=dw_act_cfg) | |
if self.concat_input: | |
self.conv_cat = DepthwiseSeparableConvModule( | |
self.in_channels + self.channels, | |
self.channels, | |
kernel_size=self.kernel_size, | |
padding=self.kernel_size // 2, | |
norm_cfg=self.norm_cfg, | |
dw_act_cfg=dw_act_cfg) | |