Spaces:
Runtime error
Runtime error
# Copyright (c) OpenMMLab. All rights reserved. | |
from typing import Optional, Tuple, Union | |
import torch | |
import torch.nn as nn | |
from mmcv.cnn import ConvModule, build_activation_layer, build_norm_layer | |
from mmengine.model import BaseModule | |
from torch import Tensor | |
from mmseg.models.decode_heads.decode_head import BaseDecodeHead | |
from mmseg.models.losses import accuracy | |
from mmseg.models.utils import resize | |
from mmseg.registry import MODELS | |
from mmseg.utils import OptConfigType, SampleList | |
class BasePIDHead(BaseModule): | |
"""Base class for PID head. | |
Args: | |
in_channels (int): Number of input channels. | |
channels (int): Number of output channels. | |
norm_cfg (dict): Config dict for normalization layer. | |
Default: dict(type='BN'). | |
act_cfg (dict): Config dict for activation layer. | |
Default: dict(type='ReLU', inplace=True). | |
init_cfg (dict or list[dict], optional): Init config dict. | |
Default: None. | |
""" | |
def __init__(self, | |
in_channels: int, | |
channels: int, | |
norm_cfg: OptConfigType = dict(type='BN'), | |
act_cfg: OptConfigType = dict(type='ReLU', inplace=True), | |
init_cfg: OptConfigType = None): | |
super().__init__(init_cfg) | |
self.conv = ConvModule( | |
in_channels, | |
channels, | |
kernel_size=3, | |
padding=1, | |
norm_cfg=norm_cfg, | |
act_cfg=act_cfg, | |
order=('norm', 'act', 'conv')) | |
_, self.norm = build_norm_layer(norm_cfg, num_features=channels) | |
self.act = build_activation_layer(act_cfg) | |
def forward(self, x: Tensor, cls_seg: Optional[nn.Module]) -> Tensor: | |
"""Forward function. | |
Args: | |
x (Tensor): Input tensor. | |
cls_seg (nn.Module, optional): The classification head. | |
Returns: | |
Tensor: Output tensor. | |
""" | |
x = self.conv(x) | |
x = self.norm(x) | |
x = self.act(x) | |
if cls_seg is not None: | |
x = cls_seg(x) | |
return x | |
class PIDHead(BaseDecodeHead): | |
"""Decode head for PIDNet. | |
Args: | |
in_channels (int): Number of input channels. | |
channels (int): Number of output channels. | |
num_classes (int): Number of classes. | |
norm_cfg (dict): Config dict for normalization layer. | |
Default: dict(type='BN'). | |
act_cfg (dict): Config dict for activation layer. | |
Default: dict(type='ReLU', inplace=True). | |
""" | |
def __init__(self, | |
in_channels: int, | |
channels: int, | |
num_classes: int, | |
norm_cfg: OptConfigType = dict(type='BN'), | |
act_cfg: OptConfigType = dict(type='ReLU', inplace=True), | |
**kwargs): | |
super().__init__( | |
in_channels, | |
channels, | |
num_classes=num_classes, | |
norm_cfg=norm_cfg, | |
act_cfg=act_cfg, | |
**kwargs) | |
self.i_head = BasePIDHead(in_channels, channels, norm_cfg, act_cfg) | |
self.p_head = BasePIDHead(in_channels // 2, channels, norm_cfg, | |
act_cfg) | |
self.d_head = BasePIDHead( | |
in_channels // 2, | |
in_channels // 4, | |
norm_cfg, | |
) | |
self.p_cls_seg = nn.Conv2d(channels, self.out_channels, kernel_size=1) | |
self.d_cls_seg = nn.Conv2d(in_channels // 4, 1, kernel_size=1) | |
def init_weights(self): | |
for m in self.modules(): | |
if isinstance(m, nn.Conv2d): | |
nn.init.kaiming_normal_( | |
m.weight, mode='fan_out', nonlinearity='relu') | |
elif isinstance(m, nn.BatchNorm2d): | |
nn.init.constant_(m.weight, 1) | |
nn.init.constant_(m.bias, 0) | |
def forward( | |
self, | |
inputs: Union[Tensor, | |
Tuple[Tensor]]) -> Union[Tensor, Tuple[Tensor]]: | |
"""Forward function. | |
Args: | |
inputs (Tensor | tuple[Tensor]): Input tensor or tuple of | |
Tensor. When training, the input is a tuple of three tensors, | |
(p_feat, i_feat, d_feat), and the output is a tuple of three | |
tensors, (p_seg_logit, i_seg_logit, d_seg_logit). | |
When inference, only the head of integral branch is used, and | |
input is a tensor of integral feature map, and the output is | |
the segmentation logit. | |
Returns: | |
Tensor | tuple[Tensor]: Output tensor or tuple of tensors. | |
""" | |
if self.training: | |
x_p, x_i, x_d = inputs | |
x_p = self.p_head(x_p, self.p_cls_seg) | |
x_i = self.i_head(x_i, self.cls_seg) | |
x_d = self.d_head(x_d, self.d_cls_seg) | |
return x_p, x_i, x_d | |
else: | |
return self.i_head(inputs, self.cls_seg) | |
def _stack_batch_gt(self, batch_data_samples: SampleList) -> Tuple[Tensor]: | |
gt_semantic_segs = [ | |
data_sample.gt_sem_seg.data for data_sample in batch_data_samples | |
] | |
gt_edge_segs = [ | |
data_sample.gt_edge_map.data for data_sample in batch_data_samples | |
] | |
gt_sem_segs = torch.stack(gt_semantic_segs, dim=0) | |
gt_edge_segs = torch.stack(gt_edge_segs, dim=0) | |
return gt_sem_segs, gt_edge_segs | |
def loss_by_feat(self, seg_logits: Tuple[Tensor], | |
batch_data_samples: SampleList) -> dict: | |
loss = dict() | |
p_logit, i_logit, d_logit = seg_logits | |
sem_label, bd_label = self._stack_batch_gt(batch_data_samples) | |
p_logit = resize( | |
input=p_logit, | |
size=sem_label.shape[2:], | |
mode='bilinear', | |
align_corners=self.align_corners) | |
i_logit = resize( | |
input=i_logit, | |
size=sem_label.shape[2:], | |
mode='bilinear', | |
align_corners=self.align_corners) | |
d_logit = resize( | |
input=d_logit, | |
size=bd_label.shape[2:], | |
mode='bilinear', | |
align_corners=self.align_corners) | |
sem_label = sem_label.squeeze(1) | |
bd_label = bd_label.squeeze(1) | |
loss['loss_sem_p'] = self.loss_decode[0]( | |
p_logit, sem_label, ignore_index=self.ignore_index) | |
loss['loss_sem_i'] = self.loss_decode[1](i_logit, sem_label) | |
loss['loss_bd'] = self.loss_decode[2](d_logit, bd_label) | |
filler = torch.ones_like(sem_label) * self.ignore_index | |
sem_bd_label = torch.where( | |
torch.sigmoid(d_logit[:, 0, :, :]) > 0.8, sem_label, filler) | |
loss['loss_sem_bd'] = self.loss_decode[3](i_logit, sem_bd_label) | |
loss['acc_seg'] = accuracy( | |
i_logit, sem_label, ignore_index=self.ignore_index) | |
return loss | |