Spaces:
Runtime error
Runtime error
# Copyright (c) OpenMMLab. All rights reserved. | |
import warnings | |
import numpy as np | |
import torch | |
import torch.nn as nn | |
import torch.nn.functional as F | |
from mmcv.cnn import build_norm_layer | |
from mmcv.cnn.bricks.drop import build_dropout | |
from mmengine.model import BaseModule, ModuleList | |
from mmengine.model.weight_init import (constant_init, kaiming_init, | |
trunc_normal_) | |
from mmengine.runner.checkpoint import _load_checkpoint | |
from scipy import interpolate | |
from torch.nn.modules.batchnorm import _BatchNorm | |
from torch.nn.modules.utils import _pair as to_2tuple | |
from mmseg.registry import MODELS | |
from ..utils import PatchEmbed | |
from .vit import TransformerEncoderLayer as VisionTransformerEncoderLayer | |
class BEiTAttention(BaseModule): | |
"""Window based multi-head self-attention (W-MSA) module with relative | |
position bias. | |
Args: | |
embed_dims (int): Number of input channels. | |
num_heads (int): Number of attention heads. | |
window_size (tuple[int]): The height and width of the window. | |
bias (bool): The option to add leanable bias for q, k, v. If bias is | |
True, it will add leanable bias. If bias is 'qv_bias', it will only | |
add leanable bias for q, v. If bias is False, it will not add bias | |
for q, k, v. Default to 'qv_bias'. | |
qk_scale (float | None, optional): Override default qk scale of | |
head_dim ** -0.5 if set. Default: None. | |
attn_drop_rate (float): Dropout ratio of attention weight. | |
Default: 0.0 | |
proj_drop_rate (float): Dropout ratio of output. Default: 0. | |
init_cfg (dict | None, optional): The Config for initialization. | |
Default: None. | |
""" | |
def __init__(self, | |
embed_dims, | |
num_heads, | |
window_size, | |
bias='qv_bias', | |
qk_scale=None, | |
attn_drop_rate=0., | |
proj_drop_rate=0., | |
init_cfg=None, | |
**kwargs): | |
super().__init__(init_cfg=init_cfg) | |
self.embed_dims = embed_dims | |
self.num_heads = num_heads | |
head_embed_dims = embed_dims // num_heads | |
self.bias = bias | |
self.scale = qk_scale or head_embed_dims**-0.5 | |
qkv_bias = bias | |
if bias == 'qv_bias': | |
self._init_qv_bias() | |
qkv_bias = False | |
self.window_size = window_size | |
self._init_rel_pos_embedding() | |
self.qkv = nn.Linear(embed_dims, embed_dims * 3, bias=qkv_bias) | |
self.attn_drop = nn.Dropout(attn_drop_rate) | |
self.proj = nn.Linear(embed_dims, embed_dims) | |
self.proj_drop = nn.Dropout(proj_drop_rate) | |
def _init_qv_bias(self): | |
self.q_bias = nn.Parameter(torch.zeros(self.embed_dims)) | |
self.v_bias = nn.Parameter(torch.zeros(self.embed_dims)) | |
def _init_rel_pos_embedding(self): | |
Wh, Ww = self.window_size | |
# cls to token & token 2 cls & cls to cls | |
self.num_relative_distance = (2 * Wh - 1) * (2 * Ww - 1) + 3 | |
# relative_position_bias_table shape is (2*Wh-1 * 2*Ww-1 + 3, nH) | |
self.relative_position_bias_table = nn.Parameter( | |
torch.zeros(self.num_relative_distance, self.num_heads)) | |
# get pair-wise relative position index for | |
# each token inside the window | |
coords_h = torch.arange(Wh) | |
coords_w = torch.arange(Ww) | |
# coords shape is (2, Wh, Ww) | |
coords = torch.stack(torch.meshgrid([coords_h, coords_w])) | |
# coords_flatten shape is (2, Wh*Ww) | |
coords_flatten = torch.flatten(coords, 1) | |
relative_coords = ( | |
coords_flatten[:, :, None] - coords_flatten[:, None, :]) | |
# relative_coords shape is (Wh*Ww, Wh*Ww, 2) | |
relative_coords = relative_coords.permute(1, 2, 0).contiguous() | |
# shift to start from 0 | |
relative_coords[:, :, 0] += Wh - 1 | |
relative_coords[:, :, 1] += Ww - 1 | |
relative_coords[:, :, 0] *= 2 * Ww - 1 | |
relative_position_index = torch.zeros( | |
size=(Wh * Ww + 1, ) * 2, dtype=relative_coords.dtype) | |
# relative_position_index shape is (Wh*Ww, Wh*Ww) | |
relative_position_index[1:, 1:] = relative_coords.sum(-1) | |
relative_position_index[0, 0:] = self.num_relative_distance - 3 | |
relative_position_index[0:, 0] = self.num_relative_distance - 2 | |
relative_position_index[0, 0] = self.num_relative_distance - 1 | |
self.register_buffer('relative_position_index', | |
relative_position_index) | |
def init_weights(self): | |
trunc_normal_(self.relative_position_bias_table, std=0.02) | |
def forward(self, x): | |
""" | |
Args: | |
x (tensor): input features with shape of (num_windows*B, N, C). | |
""" | |
B, N, C = x.shape | |
if self.bias == 'qv_bias': | |
k_bias = torch.zeros_like(self.v_bias, requires_grad=False) | |
qkv_bias = torch.cat((self.q_bias, k_bias, self.v_bias)) | |
qkv = F.linear(input=x, weight=self.qkv.weight, bias=qkv_bias) | |
else: | |
qkv = self.qkv(x) | |
qkv = qkv.reshape(B, N, 3, self.num_heads, -1).permute(2, 0, 3, 1, 4) | |
q, k, v = qkv[0], qkv[1], qkv[2] | |
q = q * self.scale | |
attn = (q @ k.transpose(-2, -1)) | |
if self.relative_position_bias_table is not None: | |
Wh = self.window_size[0] | |
Ww = self.window_size[1] | |
relative_position_bias = self.relative_position_bias_table[ | |
self.relative_position_index.view(-1)].view( | |
Wh * Ww + 1, Wh * Ww + 1, -1) | |
relative_position_bias = relative_position_bias.permute( | |
2, 0, 1).contiguous() # nH, Wh*Ww, Wh*Ww | |
attn = attn + relative_position_bias.unsqueeze(0) | |
attn = attn.softmax(dim=-1) | |
attn = self.attn_drop(attn) | |
x = (attn @ v).transpose(1, 2).reshape(B, N, C) | |
x = self.proj(x) | |
x = self.proj_drop(x) | |
return x | |
class BEiTTransformerEncoderLayer(VisionTransformerEncoderLayer): | |
"""Implements one encoder layer in Vision Transformer. | |
Args: | |
embed_dims (int): The feature dimension. | |
num_heads (int): Parallel attention heads. | |
feedforward_channels (int): The hidden dimension for FFNs. | |
attn_drop_rate (float): The drop out rate for attention layer. | |
Default: 0.0. | |
drop_path_rate (float): Stochastic depth rate. Default 0.0. | |
num_fcs (int): The number of fully-connected layers for FFNs. | |
Default: 2. | |
bias (bool): The option to add leanable bias for q, k, v. If bias is | |
True, it will add leanable bias. If bias is 'qv_bias', it will only | |
add leanable bias for q, v. If bias is False, it will not add bias | |
for q, k, v. Default to 'qv_bias'. | |
act_cfg (dict): The activation config for FFNs. | |
Default: dict(type='GELU'). | |
norm_cfg (dict): Config dict for normalization layer. | |
Default: dict(type='LN'). | |
window_size (tuple[int], optional): The height and width of the window. | |
Default: None. | |
init_values (float, optional): Initialize the values of BEiTAttention | |
and FFN with learnable scaling. Default: None. | |
""" | |
def __init__(self, | |
embed_dims, | |
num_heads, | |
feedforward_channels, | |
attn_drop_rate=0., | |
drop_path_rate=0., | |
num_fcs=2, | |
bias='qv_bias', | |
act_cfg=dict(type='GELU'), | |
norm_cfg=dict(type='LN'), | |
window_size=None, | |
attn_cfg=dict(), | |
ffn_cfg=dict(add_identity=False), | |
init_values=None): | |
attn_cfg.update(dict(window_size=window_size, qk_scale=None)) | |
super().__init__( | |
embed_dims=embed_dims, | |
num_heads=num_heads, | |
feedforward_channels=feedforward_channels, | |
attn_drop_rate=attn_drop_rate, | |
drop_path_rate=0., | |
drop_rate=0., | |
num_fcs=num_fcs, | |
qkv_bias=bias, | |
act_cfg=act_cfg, | |
norm_cfg=norm_cfg, | |
attn_cfg=attn_cfg, | |
ffn_cfg=ffn_cfg) | |
# NOTE: drop path for stochastic depth, we shall see if | |
# this is better than dropout here | |
dropout_layer = dict(type='DropPath', drop_prob=drop_path_rate) | |
self.drop_path = build_dropout( | |
dropout_layer) if dropout_layer else nn.Identity() | |
self.gamma_1 = nn.Parameter( | |
init_values * torch.ones(embed_dims), requires_grad=True) | |
self.gamma_2 = nn.Parameter( | |
init_values * torch.ones(embed_dims), requires_grad=True) | |
def build_attn(self, attn_cfg): | |
self.attn = BEiTAttention(**attn_cfg) | |
def forward(self, x): | |
x = x + self.drop_path(self.gamma_1 * self.attn(self.norm1(x))) | |
x = x + self.drop_path(self.gamma_2 * self.ffn(self.norm2(x))) | |
return x | |
class BEiT(BaseModule): | |
"""BERT Pre-Training of Image Transformers. | |
Args: | |
img_size (int | tuple): Input image size. Default: 224. | |
patch_size (int): The patch size. Default: 16. | |
in_channels (int): Number of input channels. Default: 3. | |
embed_dims (int): Embedding dimension. Default: 768. | |
num_layers (int): Depth of transformer. Default: 12. | |
num_heads (int): Number of attention heads. Default: 12. | |
mlp_ratio (int): Ratio of mlp hidden dim to embedding dim. | |
Default: 4. | |
out_indices (list | tuple | int): Output from which stages. | |
Default: -1. | |
qv_bias (bool): Enable bias for qv if True. Default: True. | |
attn_drop_rate (float): The drop out rate for attention layer. | |
Default 0.0 | |
drop_path_rate (float): Stochastic depth rate. Default 0.0. | |
norm_cfg (dict): Config dict for normalization layer. | |
Default: dict(type='LN') | |
act_cfg (dict): The activation config for FFNs. | |
Default: dict(type='GELU'). | |
patch_norm (bool): Whether to add a norm in PatchEmbed Block. | |
Default: False. | |
final_norm (bool): Whether to add a additional layer to normalize | |
final feature map. Default: False. | |
num_fcs (int): The number of fully-connected layers for FFNs. | |
Default: 2. | |
norm_eval (bool): Whether to set norm layers to eval mode, namely, | |
freeze running stats (mean and var). Note: Effect on Batch Norm | |
and its variants only. Default: False. | |
pretrained (str, optional): Model pretrained path. Default: None. | |
init_values (float): Initialize the values of BEiTAttention and FFN | |
with learnable scaling. | |
init_cfg (dict or list[dict], optional): Initialization config dict. | |
Default: None. | |
""" | |
def __init__(self, | |
img_size=224, | |
patch_size=16, | |
in_channels=3, | |
embed_dims=768, | |
num_layers=12, | |
num_heads=12, | |
mlp_ratio=4, | |
out_indices=-1, | |
qv_bias=True, | |
attn_drop_rate=0., | |
drop_path_rate=0., | |
norm_cfg=dict(type='LN'), | |
act_cfg=dict(type='GELU'), | |
patch_norm=False, | |
final_norm=False, | |
num_fcs=2, | |
norm_eval=False, | |
pretrained=None, | |
init_values=0.1, | |
init_cfg=None): | |
super().__init__(init_cfg=init_cfg) | |
if isinstance(img_size, int): | |
img_size = to_2tuple(img_size) | |
elif isinstance(img_size, tuple): | |
if len(img_size) == 1: | |
img_size = to_2tuple(img_size[0]) | |
assert len(img_size) == 2, \ | |
f'The size of image should have length 1 or 2, ' \ | |
f'but got {len(img_size)}' | |
assert not (init_cfg and pretrained), \ | |
'init_cfg and pretrained cannot be set at the same time' | |
if isinstance(pretrained, str): | |
warnings.warn('DeprecationWarning: pretrained is deprecated, ' | |
'please use "init_cfg" instead') | |
self.init_cfg = dict(type='Pretrained', checkpoint=pretrained) | |
elif pretrained is not None: | |
raise TypeError('pretrained must be a str or None') | |
self.in_channels = in_channels | |
self.img_size = img_size | |
self.patch_size = patch_size | |
self.norm_eval = norm_eval | |
self.pretrained = pretrained | |
self.num_layers = num_layers | |
self.embed_dims = embed_dims | |
self.num_heads = num_heads | |
self.mlp_ratio = mlp_ratio | |
self.attn_drop_rate = attn_drop_rate | |
self.drop_path_rate = drop_path_rate | |
self.num_fcs = num_fcs | |
self.qv_bias = qv_bias | |
self.act_cfg = act_cfg | |
self.norm_cfg = norm_cfg | |
self.patch_norm = patch_norm | |
self.init_values = init_values | |
self.window_size = (img_size[0] // patch_size, | |
img_size[1] // patch_size) | |
self.patch_shape = self.window_size | |
self.cls_token = nn.Parameter(torch.zeros(1, 1, embed_dims)) | |
self._build_patch_embedding() | |
self._build_layers() | |
if isinstance(out_indices, int): | |
if out_indices == -1: | |
out_indices = num_layers - 1 | |
self.out_indices = [out_indices] | |
elif isinstance(out_indices, list) or isinstance(out_indices, tuple): | |
self.out_indices = out_indices | |
else: | |
raise TypeError('out_indices must be type of int, list or tuple') | |
self.final_norm = final_norm | |
if final_norm: | |
self.norm1_name, norm1 = build_norm_layer( | |
norm_cfg, embed_dims, postfix=1) | |
self.add_module(self.norm1_name, norm1) | |
def _build_patch_embedding(self): | |
"""Build patch embedding layer.""" | |
self.patch_embed = PatchEmbed( | |
in_channels=self.in_channels, | |
embed_dims=self.embed_dims, | |
conv_type='Conv2d', | |
kernel_size=self.patch_size, | |
stride=self.patch_size, | |
padding=0, | |
norm_cfg=self.norm_cfg if self.patch_norm else None, | |
init_cfg=None) | |
def _build_layers(self): | |
"""Build transformer encoding layers.""" | |
dpr = [ | |
x.item() | |
for x in torch.linspace(0, self.drop_path_rate, self.num_layers) | |
] | |
self.layers = ModuleList() | |
for i in range(self.num_layers): | |
self.layers.append( | |
BEiTTransformerEncoderLayer( | |
embed_dims=self.embed_dims, | |
num_heads=self.num_heads, | |
feedforward_channels=self.mlp_ratio * self.embed_dims, | |
attn_drop_rate=self.attn_drop_rate, | |
drop_path_rate=dpr[i], | |
num_fcs=self.num_fcs, | |
bias='qv_bias' if self.qv_bias else False, | |
act_cfg=self.act_cfg, | |
norm_cfg=self.norm_cfg, | |
window_size=self.window_size, | |
init_values=self.init_values)) | |
def norm1(self): | |
return getattr(self, self.norm1_name) | |
def _geometric_sequence_interpolation(self, src_size, dst_size, sequence, | |
num): | |
"""Get new sequence via geometric sequence interpolation. | |
Args: | |
src_size (int): Pos_embedding size in pre-trained model. | |
dst_size (int): Pos_embedding size in the current model. | |
sequence (tensor): The relative position bias of the pretrain | |
model after removing the extra tokens. | |
num (int): Number of attention heads. | |
Returns: | |
new_sequence (tensor): Geometric sequence interpolate the | |
pre-trained relative position bias to the size of | |
the current model. | |
""" | |
def geometric_progression(a, r, n): | |
return a * (1.0 - r**n) / (1.0 - r) | |
# Here is a binary function. | |
left, right = 1.01, 1.5 | |
while right - left > 1e-6: | |
q = (left + right) / 2.0 | |
gp = geometric_progression(1, q, src_size // 2) | |
if gp > dst_size // 2: | |
right = q | |
else: | |
left = q | |
# The position of each interpolated point is determined | |
# by the ratio obtained by dichotomy. | |
dis = [] | |
cur = 1 | |
for i in range(src_size // 2): | |
dis.append(cur) | |
cur += q**(i + 1) | |
r_ids = [-_ for _ in reversed(dis)] | |
x = r_ids + [0] + dis | |
y = r_ids + [0] + dis | |
t = dst_size // 2.0 | |
dx = np.arange(-t, t + 0.1, 1.0) | |
dy = np.arange(-t, t + 0.1, 1.0) | |
# Interpolation functions are being executed and called. | |
new_sequence = [] | |
for i in range(num): | |
z = sequence[:, i].view(src_size, src_size).float().numpy() | |
f = interpolate.interp2d(x, y, z, kind='cubic') | |
new_sequence.append( | |
torch.Tensor(f(dx, dy)).contiguous().view(-1, 1).to(sequence)) | |
new_sequence = torch.cat(new_sequence, dim=-1) | |
return new_sequence | |
def resize_rel_pos_embed(self, checkpoint): | |
"""Resize relative pos_embed weights. | |
This function is modified from | |
https://github.com/microsoft/unilm/blob/master/beit/semantic_segmentation/mmcv_custom/checkpoint.py. # noqa: E501 | |
Copyright (c) Microsoft Corporation | |
Licensed under the MIT License | |
Args: | |
checkpoint (dict): Key and value of the pretrain model. | |
Returns: | |
state_dict (dict): Interpolate the relative pos_embed weights | |
in the pre-train model to the current model size. | |
""" | |
if 'state_dict' in checkpoint: | |
state_dict = checkpoint['state_dict'] | |
else: | |
state_dict = checkpoint | |
all_keys = list(state_dict.keys()) | |
for key in all_keys: | |
if 'relative_position_index' in key: | |
state_dict.pop(key) | |
# In order to keep the center of pos_bias as consistent as | |
# possible after interpolation, and vice versa in the edge | |
# area, the geometric sequence interpolation method is adopted. | |
if 'relative_position_bias_table' in key: | |
rel_pos_bias = state_dict[key] | |
src_num_pos, num_attn_heads = rel_pos_bias.size() | |
dst_num_pos, _ = self.state_dict()[key].size() | |
dst_patch_shape = self.patch_shape | |
if dst_patch_shape[0] != dst_patch_shape[1]: | |
raise NotImplementedError() | |
# Count the number of extra tokens. | |
num_extra_tokens = dst_num_pos - ( | |
dst_patch_shape[0] * 2 - 1) * ( | |
dst_patch_shape[1] * 2 - 1) | |
src_size = int((src_num_pos - num_extra_tokens)**0.5) | |
dst_size = int((dst_num_pos - num_extra_tokens)**0.5) | |
if src_size != dst_size: | |
extra_tokens = rel_pos_bias[-num_extra_tokens:, :] | |
rel_pos_bias = rel_pos_bias[:-num_extra_tokens, :] | |
new_rel_pos_bias = self._geometric_sequence_interpolation( | |
src_size, dst_size, rel_pos_bias, num_attn_heads) | |
new_rel_pos_bias = torch.cat( | |
(new_rel_pos_bias, extra_tokens), dim=0) | |
state_dict[key] = new_rel_pos_bias | |
return state_dict | |
def init_weights(self): | |
def _init_weights(m): | |
if isinstance(m, nn.Linear): | |
trunc_normal_(m.weight, std=.02) | |
if isinstance(m, nn.Linear) and m.bias is not None: | |
nn.init.constant_(m.bias, 0) | |
elif isinstance(m, nn.LayerNorm): | |
nn.init.constant_(m.bias, 0) | |
nn.init.constant_(m.weight, 1.0) | |
self.apply(_init_weights) | |
if (isinstance(self.init_cfg, dict) | |
and self.init_cfg.get('type') == 'Pretrained'): | |
checkpoint = _load_checkpoint( | |
self.init_cfg['checkpoint'], logger=None, map_location='cpu') | |
state_dict = self.resize_rel_pos_embed(checkpoint) | |
self.load_state_dict(state_dict, False) | |
elif self.init_cfg is not None: | |
super().init_weights() | |
else: | |
# We only implement the 'jax_impl' initialization implemented at | |
# https://github.com/rwightman/pytorch-image-models/blob/master/timm/models/vision_transformer.py#L353 # noqa: E501 | |
# Copyright 2019 Ross Wightman | |
# Licensed under the Apache License, Version 2.0 (the "License") | |
trunc_normal_(self.cls_token, std=.02) | |
for n, m in self.named_modules(): | |
if isinstance(m, nn.Linear): | |
trunc_normal_(m.weight, std=.02) | |
if m.bias is not None: | |
if 'ffn' in n: | |
nn.init.normal_(m.bias, mean=0., std=1e-6) | |
else: | |
nn.init.constant_(m.bias, 0) | |
elif isinstance(m, nn.Conv2d): | |
kaiming_init(m, mode='fan_in', bias=0.) | |
elif isinstance(m, (_BatchNorm, nn.GroupNorm, nn.LayerNorm)): | |
constant_init(m, val=1.0, bias=0.) | |
def forward(self, inputs): | |
B = inputs.shape[0] | |
x, hw_shape = self.patch_embed(inputs) | |
# stole cls_tokens impl from Phil Wang, thanks | |
cls_tokens = self.cls_token.expand(B, -1, -1) | |
x = torch.cat((cls_tokens, x), dim=1) | |
outs = [] | |
for i, layer in enumerate(self.layers): | |
x = layer(x) | |
if i == len(self.layers) - 1: | |
if self.final_norm: | |
x = self.norm1(x) | |
if i in self.out_indices: | |
# Remove class token and reshape token for decoder head | |
out = x[:, 1:] | |
B, _, C = out.shape | |
out = out.reshape(B, hw_shape[0], hw_shape[1], | |
C).permute(0, 3, 1, 2).contiguous() | |
outs.append(out) | |
return tuple(outs) | |
def train(self, mode=True): | |
super().train(mode) | |
if mode and self.norm_eval: | |
for m in self.modules(): | |
if isinstance(m, nn.LayerNorm): | |
m.eval() | |