Spaces:
Runtime error
Runtime error
File size: 22,825 Bytes
3b96cb1 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 |
# Copyright (c) OpenMMLab. All rights reserved.
import warnings
import numpy as np
import torch
import torch.nn as nn
import torch.nn.functional as F
from mmcv.cnn import build_norm_layer
from mmcv.cnn.bricks.drop import build_dropout
from mmengine.model import BaseModule, ModuleList
from mmengine.model.weight_init import (constant_init, kaiming_init,
trunc_normal_)
from mmengine.runner.checkpoint import _load_checkpoint
from scipy import interpolate
from torch.nn.modules.batchnorm import _BatchNorm
from torch.nn.modules.utils import _pair as to_2tuple
from mmseg.registry import MODELS
from ..utils import PatchEmbed
from .vit import TransformerEncoderLayer as VisionTransformerEncoderLayer
class BEiTAttention(BaseModule):
"""Window based multi-head self-attention (W-MSA) module with relative
position bias.
Args:
embed_dims (int): Number of input channels.
num_heads (int): Number of attention heads.
window_size (tuple[int]): The height and width of the window.
bias (bool): The option to add leanable bias for q, k, v. If bias is
True, it will add leanable bias. If bias is 'qv_bias', it will only
add leanable bias for q, v. If bias is False, it will not add bias
for q, k, v. Default to 'qv_bias'.
qk_scale (float | None, optional): Override default qk scale of
head_dim ** -0.5 if set. Default: None.
attn_drop_rate (float): Dropout ratio of attention weight.
Default: 0.0
proj_drop_rate (float): Dropout ratio of output. Default: 0.
init_cfg (dict | None, optional): The Config for initialization.
Default: None.
"""
def __init__(self,
embed_dims,
num_heads,
window_size,
bias='qv_bias',
qk_scale=None,
attn_drop_rate=0.,
proj_drop_rate=0.,
init_cfg=None,
**kwargs):
super().__init__(init_cfg=init_cfg)
self.embed_dims = embed_dims
self.num_heads = num_heads
head_embed_dims = embed_dims // num_heads
self.bias = bias
self.scale = qk_scale or head_embed_dims**-0.5
qkv_bias = bias
if bias == 'qv_bias':
self._init_qv_bias()
qkv_bias = False
self.window_size = window_size
self._init_rel_pos_embedding()
self.qkv = nn.Linear(embed_dims, embed_dims * 3, bias=qkv_bias)
self.attn_drop = nn.Dropout(attn_drop_rate)
self.proj = nn.Linear(embed_dims, embed_dims)
self.proj_drop = nn.Dropout(proj_drop_rate)
def _init_qv_bias(self):
self.q_bias = nn.Parameter(torch.zeros(self.embed_dims))
self.v_bias = nn.Parameter(torch.zeros(self.embed_dims))
def _init_rel_pos_embedding(self):
Wh, Ww = self.window_size
# cls to token & token 2 cls & cls to cls
self.num_relative_distance = (2 * Wh - 1) * (2 * Ww - 1) + 3
# relative_position_bias_table shape is (2*Wh-1 * 2*Ww-1 + 3, nH)
self.relative_position_bias_table = nn.Parameter(
torch.zeros(self.num_relative_distance, self.num_heads))
# get pair-wise relative position index for
# each token inside the window
coords_h = torch.arange(Wh)
coords_w = torch.arange(Ww)
# coords shape is (2, Wh, Ww)
coords = torch.stack(torch.meshgrid([coords_h, coords_w]))
# coords_flatten shape is (2, Wh*Ww)
coords_flatten = torch.flatten(coords, 1)
relative_coords = (
coords_flatten[:, :, None] - coords_flatten[:, None, :])
# relative_coords shape is (Wh*Ww, Wh*Ww, 2)
relative_coords = relative_coords.permute(1, 2, 0).contiguous()
# shift to start from 0
relative_coords[:, :, 0] += Wh - 1
relative_coords[:, :, 1] += Ww - 1
relative_coords[:, :, 0] *= 2 * Ww - 1
relative_position_index = torch.zeros(
size=(Wh * Ww + 1, ) * 2, dtype=relative_coords.dtype)
# relative_position_index shape is (Wh*Ww, Wh*Ww)
relative_position_index[1:, 1:] = relative_coords.sum(-1)
relative_position_index[0, 0:] = self.num_relative_distance - 3
relative_position_index[0:, 0] = self.num_relative_distance - 2
relative_position_index[0, 0] = self.num_relative_distance - 1
self.register_buffer('relative_position_index',
relative_position_index)
def init_weights(self):
trunc_normal_(self.relative_position_bias_table, std=0.02)
def forward(self, x):
"""
Args:
x (tensor): input features with shape of (num_windows*B, N, C).
"""
B, N, C = x.shape
if self.bias == 'qv_bias':
k_bias = torch.zeros_like(self.v_bias, requires_grad=False)
qkv_bias = torch.cat((self.q_bias, k_bias, self.v_bias))
qkv = F.linear(input=x, weight=self.qkv.weight, bias=qkv_bias)
else:
qkv = self.qkv(x)
qkv = qkv.reshape(B, N, 3, self.num_heads, -1).permute(2, 0, 3, 1, 4)
q, k, v = qkv[0], qkv[1], qkv[2]
q = q * self.scale
attn = (q @ k.transpose(-2, -1))
if self.relative_position_bias_table is not None:
Wh = self.window_size[0]
Ww = self.window_size[1]
relative_position_bias = self.relative_position_bias_table[
self.relative_position_index.view(-1)].view(
Wh * Ww + 1, Wh * Ww + 1, -1)
relative_position_bias = relative_position_bias.permute(
2, 0, 1).contiguous() # nH, Wh*Ww, Wh*Ww
attn = attn + relative_position_bias.unsqueeze(0)
attn = attn.softmax(dim=-1)
attn = self.attn_drop(attn)
x = (attn @ v).transpose(1, 2).reshape(B, N, C)
x = self.proj(x)
x = self.proj_drop(x)
return x
class BEiTTransformerEncoderLayer(VisionTransformerEncoderLayer):
"""Implements one encoder layer in Vision Transformer.
Args:
embed_dims (int): The feature dimension.
num_heads (int): Parallel attention heads.
feedforward_channels (int): The hidden dimension for FFNs.
attn_drop_rate (float): The drop out rate for attention layer.
Default: 0.0.
drop_path_rate (float): Stochastic depth rate. Default 0.0.
num_fcs (int): The number of fully-connected layers for FFNs.
Default: 2.
bias (bool): The option to add leanable bias for q, k, v. If bias is
True, it will add leanable bias. If bias is 'qv_bias', it will only
add leanable bias for q, v. If bias is False, it will not add bias
for q, k, v. Default to 'qv_bias'.
act_cfg (dict): The activation config for FFNs.
Default: dict(type='GELU').
norm_cfg (dict): Config dict for normalization layer.
Default: dict(type='LN').
window_size (tuple[int], optional): The height and width of the window.
Default: None.
init_values (float, optional): Initialize the values of BEiTAttention
and FFN with learnable scaling. Default: None.
"""
def __init__(self,
embed_dims,
num_heads,
feedforward_channels,
attn_drop_rate=0.,
drop_path_rate=0.,
num_fcs=2,
bias='qv_bias',
act_cfg=dict(type='GELU'),
norm_cfg=dict(type='LN'),
window_size=None,
attn_cfg=dict(),
ffn_cfg=dict(add_identity=False),
init_values=None):
attn_cfg.update(dict(window_size=window_size, qk_scale=None))
super().__init__(
embed_dims=embed_dims,
num_heads=num_heads,
feedforward_channels=feedforward_channels,
attn_drop_rate=attn_drop_rate,
drop_path_rate=0.,
drop_rate=0.,
num_fcs=num_fcs,
qkv_bias=bias,
act_cfg=act_cfg,
norm_cfg=norm_cfg,
attn_cfg=attn_cfg,
ffn_cfg=ffn_cfg)
# NOTE: drop path for stochastic depth, we shall see if
# this is better than dropout here
dropout_layer = dict(type='DropPath', drop_prob=drop_path_rate)
self.drop_path = build_dropout(
dropout_layer) if dropout_layer else nn.Identity()
self.gamma_1 = nn.Parameter(
init_values * torch.ones(embed_dims), requires_grad=True)
self.gamma_2 = nn.Parameter(
init_values * torch.ones(embed_dims), requires_grad=True)
def build_attn(self, attn_cfg):
self.attn = BEiTAttention(**attn_cfg)
def forward(self, x):
x = x + self.drop_path(self.gamma_1 * self.attn(self.norm1(x)))
x = x + self.drop_path(self.gamma_2 * self.ffn(self.norm2(x)))
return x
@MODELS.register_module()
class BEiT(BaseModule):
"""BERT Pre-Training of Image Transformers.
Args:
img_size (int | tuple): Input image size. Default: 224.
patch_size (int): The patch size. Default: 16.
in_channels (int): Number of input channels. Default: 3.
embed_dims (int): Embedding dimension. Default: 768.
num_layers (int): Depth of transformer. Default: 12.
num_heads (int): Number of attention heads. Default: 12.
mlp_ratio (int): Ratio of mlp hidden dim to embedding dim.
Default: 4.
out_indices (list | tuple | int): Output from which stages.
Default: -1.
qv_bias (bool): Enable bias for qv if True. Default: True.
attn_drop_rate (float): The drop out rate for attention layer.
Default 0.0
drop_path_rate (float): Stochastic depth rate. Default 0.0.
norm_cfg (dict): Config dict for normalization layer.
Default: dict(type='LN')
act_cfg (dict): The activation config for FFNs.
Default: dict(type='GELU').
patch_norm (bool): Whether to add a norm in PatchEmbed Block.
Default: False.
final_norm (bool): Whether to add a additional layer to normalize
final feature map. Default: False.
num_fcs (int): The number of fully-connected layers for FFNs.
Default: 2.
norm_eval (bool): Whether to set norm layers to eval mode, namely,
freeze running stats (mean and var). Note: Effect on Batch Norm
and its variants only. Default: False.
pretrained (str, optional): Model pretrained path. Default: None.
init_values (float): Initialize the values of BEiTAttention and FFN
with learnable scaling.
init_cfg (dict or list[dict], optional): Initialization config dict.
Default: None.
"""
def __init__(self,
img_size=224,
patch_size=16,
in_channels=3,
embed_dims=768,
num_layers=12,
num_heads=12,
mlp_ratio=4,
out_indices=-1,
qv_bias=True,
attn_drop_rate=0.,
drop_path_rate=0.,
norm_cfg=dict(type='LN'),
act_cfg=dict(type='GELU'),
patch_norm=False,
final_norm=False,
num_fcs=2,
norm_eval=False,
pretrained=None,
init_values=0.1,
init_cfg=None):
super().__init__(init_cfg=init_cfg)
if isinstance(img_size, int):
img_size = to_2tuple(img_size)
elif isinstance(img_size, tuple):
if len(img_size) == 1:
img_size = to_2tuple(img_size[0])
assert len(img_size) == 2, \
f'The size of image should have length 1 or 2, ' \
f'but got {len(img_size)}'
assert not (init_cfg and pretrained), \
'init_cfg and pretrained cannot be set at the same time'
if isinstance(pretrained, str):
warnings.warn('DeprecationWarning: pretrained is deprecated, '
'please use "init_cfg" instead')
self.init_cfg = dict(type='Pretrained', checkpoint=pretrained)
elif pretrained is not None:
raise TypeError('pretrained must be a str or None')
self.in_channels = in_channels
self.img_size = img_size
self.patch_size = patch_size
self.norm_eval = norm_eval
self.pretrained = pretrained
self.num_layers = num_layers
self.embed_dims = embed_dims
self.num_heads = num_heads
self.mlp_ratio = mlp_ratio
self.attn_drop_rate = attn_drop_rate
self.drop_path_rate = drop_path_rate
self.num_fcs = num_fcs
self.qv_bias = qv_bias
self.act_cfg = act_cfg
self.norm_cfg = norm_cfg
self.patch_norm = patch_norm
self.init_values = init_values
self.window_size = (img_size[0] // patch_size,
img_size[1] // patch_size)
self.patch_shape = self.window_size
self.cls_token = nn.Parameter(torch.zeros(1, 1, embed_dims))
self._build_patch_embedding()
self._build_layers()
if isinstance(out_indices, int):
if out_indices == -1:
out_indices = num_layers - 1
self.out_indices = [out_indices]
elif isinstance(out_indices, list) or isinstance(out_indices, tuple):
self.out_indices = out_indices
else:
raise TypeError('out_indices must be type of int, list or tuple')
self.final_norm = final_norm
if final_norm:
self.norm1_name, norm1 = build_norm_layer(
norm_cfg, embed_dims, postfix=1)
self.add_module(self.norm1_name, norm1)
def _build_patch_embedding(self):
"""Build patch embedding layer."""
self.patch_embed = PatchEmbed(
in_channels=self.in_channels,
embed_dims=self.embed_dims,
conv_type='Conv2d',
kernel_size=self.patch_size,
stride=self.patch_size,
padding=0,
norm_cfg=self.norm_cfg if self.patch_norm else None,
init_cfg=None)
def _build_layers(self):
"""Build transformer encoding layers."""
dpr = [
x.item()
for x in torch.linspace(0, self.drop_path_rate, self.num_layers)
]
self.layers = ModuleList()
for i in range(self.num_layers):
self.layers.append(
BEiTTransformerEncoderLayer(
embed_dims=self.embed_dims,
num_heads=self.num_heads,
feedforward_channels=self.mlp_ratio * self.embed_dims,
attn_drop_rate=self.attn_drop_rate,
drop_path_rate=dpr[i],
num_fcs=self.num_fcs,
bias='qv_bias' if self.qv_bias else False,
act_cfg=self.act_cfg,
norm_cfg=self.norm_cfg,
window_size=self.window_size,
init_values=self.init_values))
@property
def norm1(self):
return getattr(self, self.norm1_name)
def _geometric_sequence_interpolation(self, src_size, dst_size, sequence,
num):
"""Get new sequence via geometric sequence interpolation.
Args:
src_size (int): Pos_embedding size in pre-trained model.
dst_size (int): Pos_embedding size in the current model.
sequence (tensor): The relative position bias of the pretrain
model after removing the extra tokens.
num (int): Number of attention heads.
Returns:
new_sequence (tensor): Geometric sequence interpolate the
pre-trained relative position bias to the size of
the current model.
"""
def geometric_progression(a, r, n):
return a * (1.0 - r**n) / (1.0 - r)
# Here is a binary function.
left, right = 1.01, 1.5
while right - left > 1e-6:
q = (left + right) / 2.0
gp = geometric_progression(1, q, src_size // 2)
if gp > dst_size // 2:
right = q
else:
left = q
# The position of each interpolated point is determined
# by the ratio obtained by dichotomy.
dis = []
cur = 1
for i in range(src_size // 2):
dis.append(cur)
cur += q**(i + 1)
r_ids = [-_ for _ in reversed(dis)]
x = r_ids + [0] + dis
y = r_ids + [0] + dis
t = dst_size // 2.0
dx = np.arange(-t, t + 0.1, 1.0)
dy = np.arange(-t, t + 0.1, 1.0)
# Interpolation functions are being executed and called.
new_sequence = []
for i in range(num):
z = sequence[:, i].view(src_size, src_size).float().numpy()
f = interpolate.interp2d(x, y, z, kind='cubic')
new_sequence.append(
torch.Tensor(f(dx, dy)).contiguous().view(-1, 1).to(sequence))
new_sequence = torch.cat(new_sequence, dim=-1)
return new_sequence
def resize_rel_pos_embed(self, checkpoint):
"""Resize relative pos_embed weights.
This function is modified from
https://github.com/microsoft/unilm/blob/master/beit/semantic_segmentation/mmcv_custom/checkpoint.py. # noqa: E501
Copyright (c) Microsoft Corporation
Licensed under the MIT License
Args:
checkpoint (dict): Key and value of the pretrain model.
Returns:
state_dict (dict): Interpolate the relative pos_embed weights
in the pre-train model to the current model size.
"""
if 'state_dict' in checkpoint:
state_dict = checkpoint['state_dict']
else:
state_dict = checkpoint
all_keys = list(state_dict.keys())
for key in all_keys:
if 'relative_position_index' in key:
state_dict.pop(key)
# In order to keep the center of pos_bias as consistent as
# possible after interpolation, and vice versa in the edge
# area, the geometric sequence interpolation method is adopted.
if 'relative_position_bias_table' in key:
rel_pos_bias = state_dict[key]
src_num_pos, num_attn_heads = rel_pos_bias.size()
dst_num_pos, _ = self.state_dict()[key].size()
dst_patch_shape = self.patch_shape
if dst_patch_shape[0] != dst_patch_shape[1]:
raise NotImplementedError()
# Count the number of extra tokens.
num_extra_tokens = dst_num_pos - (
dst_patch_shape[0] * 2 - 1) * (
dst_patch_shape[1] * 2 - 1)
src_size = int((src_num_pos - num_extra_tokens)**0.5)
dst_size = int((dst_num_pos - num_extra_tokens)**0.5)
if src_size != dst_size:
extra_tokens = rel_pos_bias[-num_extra_tokens:, :]
rel_pos_bias = rel_pos_bias[:-num_extra_tokens, :]
new_rel_pos_bias = self._geometric_sequence_interpolation(
src_size, dst_size, rel_pos_bias, num_attn_heads)
new_rel_pos_bias = torch.cat(
(new_rel_pos_bias, extra_tokens), dim=0)
state_dict[key] = new_rel_pos_bias
return state_dict
def init_weights(self):
def _init_weights(m):
if isinstance(m, nn.Linear):
trunc_normal_(m.weight, std=.02)
if isinstance(m, nn.Linear) and m.bias is not None:
nn.init.constant_(m.bias, 0)
elif isinstance(m, nn.LayerNorm):
nn.init.constant_(m.bias, 0)
nn.init.constant_(m.weight, 1.0)
self.apply(_init_weights)
if (isinstance(self.init_cfg, dict)
and self.init_cfg.get('type') == 'Pretrained'):
checkpoint = _load_checkpoint(
self.init_cfg['checkpoint'], logger=None, map_location='cpu')
state_dict = self.resize_rel_pos_embed(checkpoint)
self.load_state_dict(state_dict, False)
elif self.init_cfg is not None:
super().init_weights()
else:
# We only implement the 'jax_impl' initialization implemented at
# https://github.com/rwightman/pytorch-image-models/blob/master/timm/models/vision_transformer.py#L353 # noqa: E501
# Copyright 2019 Ross Wightman
# Licensed under the Apache License, Version 2.0 (the "License")
trunc_normal_(self.cls_token, std=.02)
for n, m in self.named_modules():
if isinstance(m, nn.Linear):
trunc_normal_(m.weight, std=.02)
if m.bias is not None:
if 'ffn' in n:
nn.init.normal_(m.bias, mean=0., std=1e-6)
else:
nn.init.constant_(m.bias, 0)
elif isinstance(m, nn.Conv2d):
kaiming_init(m, mode='fan_in', bias=0.)
elif isinstance(m, (_BatchNorm, nn.GroupNorm, nn.LayerNorm)):
constant_init(m, val=1.0, bias=0.)
def forward(self, inputs):
B = inputs.shape[0]
x, hw_shape = self.patch_embed(inputs)
# stole cls_tokens impl from Phil Wang, thanks
cls_tokens = self.cls_token.expand(B, -1, -1)
x = torch.cat((cls_tokens, x), dim=1)
outs = []
for i, layer in enumerate(self.layers):
x = layer(x)
if i == len(self.layers) - 1:
if self.final_norm:
x = self.norm1(x)
if i in self.out_indices:
# Remove class token and reshape token for decoder head
out = x[:, 1:]
B, _, C = out.shape
out = out.reshape(B, hw_shape[0], hw_shape[1],
C).permute(0, 3, 1, 2).contiguous()
outs.append(out)
return tuple(outs)
def train(self, mode=True):
super().train(mode)
if mode and self.norm_eval:
for m in self.modules():
if isinstance(m, nn.LayerNorm):
m.eval()
|