Spaces:
Runtime error
Runtime error
# Copyright (c) OpenMMLab. All rights reserved. | |
from typing import Dict, List | |
import torch | |
from mmpretrain.registry import MODELS | |
from mmpretrain.structures import DataSample | |
from .base import BaseSelfSupervisor | |
class EVA(BaseSelfSupervisor): | |
"""EVA. | |
Implementation of `EVA: Exploring the Limits of Masked Visual | |
Representation Learning at Scale <https://arxiv.org/abs/2211.07636>`_. | |
""" | |
def extract_feat(self, inputs: torch.Tensor): | |
return self.backbone(inputs, mask=None) | |
def loss(self, inputs: torch.Tensor, data_samples: List[DataSample], | |
**kwargs) -> Dict[str, torch.Tensor]: | |
"""The forward function in training. | |
Args: | |
inputs (torch.Tensor): The input images. | |
data_samples (List[DataSample]): All elements required | |
during the forward function. | |
Returns: | |
Dict[str, torch.Tensor]: A dictionary of loss components. | |
""" | |
clip_feature, _ = self.target_generator(inputs) | |
latent, mask, ids_restore = self.backbone(inputs) | |
pred = self.neck(latent, ids_restore) | |
clip_feature = clip_feature[:, 1:, :] | |
loss = self.head.loss(pred, clip_feature, mask) | |
losses = dict(loss=loss) | |
return losses | |