Spaces:
Runtime error
Runtime error
# Copyright (c) OpenMMLab. All rights reserved. | |
import torch | |
from torch import Tensor, nn | |
from torch.nn import functional as F | |
from torch.nn.parameter import Parameter | |
from mmpretrain.registry import MODELS | |
def gem(x: Tensor, p: Parameter, eps: float = 1e-6, clamp=True) -> Tensor: | |
if clamp: | |
x = x.clamp(min=eps) | |
return F.avg_pool2d(x.pow(p), (x.size(-2), x.size(-1))).pow(1. / p) | |
class GeneralizedMeanPooling(nn.Module): | |
"""Generalized Mean Pooling neck. | |
Note that we use `view` to remove extra channel after pooling. We do not | |
use `squeeze` as it will also remove the batch dimension when the tensor | |
has a batch dimension of size 1, which can lead to unexpected errors. | |
Args: | |
p (float): Parameter value. Defaults to 3. | |
eps (float): epsilon. Defaults to 1e-6. | |
clamp (bool): Use clamp before pooling. Defaults to True | |
p_trainable (bool): Toggle whether Parameter p is trainable or not. | |
Defaults to True. | |
""" | |
def __init__(self, p=3., eps=1e-6, clamp=True, p_trainable=True): | |
assert p >= 1, "'p' must be a value greater than 1" | |
super(GeneralizedMeanPooling, self).__init__() | |
self.p = Parameter(torch.ones(1) * p, requires_grad=p_trainable) | |
self.eps = eps | |
self.clamp = clamp | |
self.p_trainable = p_trainable | |
def forward(self, inputs): | |
if isinstance(inputs, tuple): | |
outs = tuple([ | |
gem(x, p=self.p, eps=self.eps, clamp=self.clamp) | |
for x in inputs | |
]) | |
outs = tuple( | |
[out.view(x.size(0), -1) for out, x in zip(outs, inputs)]) | |
elif isinstance(inputs, torch.Tensor): | |
outs = gem(inputs, p=self.p, eps=self.eps, clamp=self.clamp) | |
outs = outs.view(inputs.size(0), -1) | |
else: | |
raise TypeError('neck inputs should be tuple or torch.tensor') | |
return outs | |