KyanChen's picture
Upload 1861 files
3b96cb1
raw
history blame
1.5 kB
# Copyright (c) OpenMMLab. All rights reserved.
import torch
import torch.nn as nn
from mmpretrain.registry import MODELS
@MODELS.register_module()
class GlobalAveragePooling(nn.Module):
"""Global Average Pooling neck.
Note that we use `view` to remove extra channel after pooling. We do not
use `squeeze` as it will also remove the batch dimension when the tensor
has a batch dimension of size 1, which can lead to unexpected errors.
Args:
dim (int): Dimensions of each sample channel, can be one of {1, 2, 3}.
Default: 2
"""
def __init__(self, dim=2):
super(GlobalAveragePooling, self).__init__()
assert dim in [1, 2, 3], 'GlobalAveragePooling dim only support ' \
f'{1, 2, 3}, get {dim} instead.'
if dim == 1:
self.gap = nn.AdaptiveAvgPool1d(1)
elif dim == 2:
self.gap = nn.AdaptiveAvgPool2d((1, 1))
else:
self.gap = nn.AdaptiveAvgPool3d((1, 1, 1))
def init_weights(self):
pass
def forward(self, inputs):
if isinstance(inputs, tuple):
outs = tuple([self.gap(x) for x in inputs])
outs = tuple(
[out.view(x.size(0), -1) for out, x in zip(outs, inputs)])
elif isinstance(inputs, torch.Tensor):
outs = self.gap(inputs)
outs = outs.view(inputs.size(0), -1)
else:
raise TypeError('neck inputs should be tuple or torch.tensor')
return outs