TTP / mmpretrain /configs /swin_transformer /swin_tiny_16xb64_in1k.py
KyanChen's picture
Upload 1861 files
3b96cb1
raw
history blame
1.3 kB
# Copyright (c) OpenMMLab. All rights reserved.
# This is a BETA new format config file, and the usage may change recently.
from mmengine.config import read_base
from mmengine.model import ConstantInit, TruncNormalInit
from mmpretrain.models import CutMix, LabelSmoothLoss, Mixup
with read_base():
from .._base_.datasets.imagenet_bs64_swin_224 import *
from .._base_.default_runtime import *
from .._base_.models.swin_transformer_base import *
from .._base_.schedules.imagenet_bs1024_adamw_swin import *
# model settings
model.update(
backbone=dict(
arch='tiny', img_size=224, drop_path_rate=0.2, stage_cfgs=None),
head=dict(
in_channels=768,
init_cfg=None, # suppress the default init_cfg of LinearClsHead.
loss=dict(
type=LabelSmoothLoss,
label_smooth_val=0.1,
mode='original',
loss_weight=0),
topk=None,
cal_acc=False),
init_cfg=[
dict(type=TruncNormalInit, layer='Linear', std=0.02, bias=0.),
dict(type=ConstantInit, layer='LayerNorm', val=1., bias=0.)
],
train_cfg=dict(
augments=[dict(type=Mixup, alpha=0.8),
dict(type=CutMix, alpha=1.0)]))
# schedule settings
optim_wrapper = dict(clip_grad=dict(max_norm=5.0))