TTP / mmpretrain /configs /beit /benchmarks /beit-base-p16_8xb128-coslr-100e_in1k.py
KyanChen's picture
Upload 1861 files
3b96cb1
raw
history blame
4.26 kB
# Copyright (c) OpenMMLab. All rights reserved.
# This is a BETA new format config file, and the usage may change recently.
from mmengine.config import read_base
with read_base():
from ..._base_.datasets.imagenet_bs64_swin_224 import *
from ..._base_.schedules.imagenet_bs1024_adamw_swin import *
from ..._base_.default_runtime import *
from mmengine.hooks import CheckpointHook
from mmengine.model import PretrainedInit, TruncNormalInit
from mmengine.optim import CosineAnnealingLR, LinearLR
from torch.optim import AdamW
from mmpretrain.datasets import LoadImageFromFile, PackInputs, RandomFlip
from mmpretrain.engine.optimizers import \
LearningRateDecayOptimWrapperConstructor
from mmpretrain.models import (BEiTViT, ImageClassifier, LabelSmoothLoss,
LinearClsHead)
from mmpretrain.models.utils.batch_augments import CutMix, Mixup
data_preprocessor = dict(
num_classes=1000,
mean=[127.5, 127.5, 127.5],
std=[127.5, 127.5, 127.5],
to_rgb=True,
)
# model settings
model = dict(
type=ImageClassifier,
backbone=dict(
type=BEiTViT,
arch='base',
img_size=224,
patch_size=16,
drop_path_rate=0.1,
out_type='avg_featmap',
use_abs_pos_emb=False,
use_rel_pos_bias=True,
use_shared_rel_pos_bias=False,
init_cfg=dict(type=PretrainedInit, checkpoint='', prefix='backbone.')),
neck=None,
head=dict(
type=LinearClsHead,
num_classes=1000,
in_channels=768,
loss=dict(type=LabelSmoothLoss, label_smooth_val=0.1, mode='original'),
init_cfg=[dict(type=TruncNormalInit, layer='Linear', std=0.02)]),
train_cfg=dict(
augments=[dict(type=Mixup, alpha=0.8),
dict(type=CutMix, alpha=1.0)]))
train_pipeline = [
dict(type=LoadImageFromFile),
dict(
type=RandomResizedCrop,
scale=224,
backend='pillow',
interpolation='bicubic'),
dict(type=RandomFlip, prob=0.5, direction='horizontal'),
dict(
type=RandAugment,
policies='timm_increasing',
num_policies=2,
total_level=10,
magnitude_level=9,
magnitude_std=0.5,
hparams=dict(pad_val=[104, 116, 124], interpolation='bicubic')),
dict(
type=RandomErasing,
erase_prob=0.25,
mode='rand',
min_area_ratio=0.02,
max_area_ratio=0.3333333333333333,
fill_color=[103.53, 116.28, 123.675],
fill_std=[57.375, 57.12, 58.395]),
dict(type=PackInputs)
]
test_pipeline = [
dict(type=LoadImageFromFile),
dict(
type=ResizeEdge,
scale=256,
edge='short',
backend='pillow',
interpolation='bicubic'),
dict(type=CenterCrop, crop_size=224),
dict(type=PackInputs)
]
train_dataloader = dict(batch_size=128, dataset=dict(pipeline=train_pipeline))
val_dataloader = dict(batch_size=128, dataset=dict(pipeline=test_pipeline))
test_dataloader = val_dataloader
# optimizer wrapper
optim_wrapper = dict(
optimizer=dict(type=AdamW, lr=4e-3, weight_decay=0.05, betas=(0.9, 0.999)),
constructor=LearningRateDecayOptimWrapperConstructor,
paramwise_cfg=dict(
_delete_=True,
layer_decay_rate=0.65,
custom_keys={
# the following configurations are designed for BEiT
'.ln': dict(decay_mult=0.0),
'.bias': dict(decay_mult=0.0),
'q_bias': dict(decay_mult=0.0),
'v_bias': dict(decay_mult=0.0),
'.cls_token': dict(decay_mult=0.0),
'.pos_embed': dict(decay_mult=0.0),
'.gamma': dict(decay_mult=0.0),
}))
# learning rate scheduler
param_scheduler = [
dict(
type=LinearLR,
start_factor=1e-4,
by_epoch=True,
begin=0,
end=20,
convert_to_iter_based=True),
dict(
type=CosineAnnealingLR,
by_epoch=True,
begin=20,
end=100,
eta_min=1e-6,
convert_to_iter_based=True)
]
# runtime settings
default_hooks = dict(
# save checkpoint per epoch.
checkpoint=dict(type=CheckpointHook, interval=1, max_keep_ckpts=2))
train_cfg = dict(by_epoch=True, max_epochs=100)
randomness = dict(seed=0)