Spaces:
Runtime error
Runtime error
# Copyright (c) OpenMMLab. All rights reserved. | |
import argparse | |
import os.path as osp | |
import mmengine | |
import numpy as np | |
import torch | |
def vit_jax_to_torch(jax_weights, num_layer=12): | |
torch_weights = dict() | |
# patch embedding | |
conv_filters = jax_weights['embedding/kernel'] | |
conv_filters = conv_filters.permute(3, 2, 0, 1) | |
torch_weights['patch_embed.projection.weight'] = conv_filters | |
torch_weights['patch_embed.projection.bias'] = jax_weights[ | |
'embedding/bias'] | |
# pos embedding | |
torch_weights['pos_embed'] = jax_weights[ | |
'Transformer/posembed_input/pos_embedding'] | |
# cls token | |
torch_weights['cls_token'] = jax_weights['cls'] | |
# head | |
torch_weights['ln1.weight'] = jax_weights['Transformer/encoder_norm/scale'] | |
torch_weights['ln1.bias'] = jax_weights['Transformer/encoder_norm/bias'] | |
# transformer blocks | |
for i in range(num_layer): | |
jax_block = f'Transformer/encoderblock_{i}' | |
torch_block = f'layers.{i}' | |
# attention norm | |
torch_weights[f'{torch_block}.ln1.weight'] = jax_weights[ | |
f'{jax_block}/LayerNorm_0/scale'] | |
torch_weights[f'{torch_block}.ln1.bias'] = jax_weights[ | |
f'{jax_block}/LayerNorm_0/bias'] | |
# attention | |
query_weight = jax_weights[ | |
f'{jax_block}/MultiHeadDotProductAttention_1/query/kernel'] | |
query_bias = jax_weights[ | |
f'{jax_block}/MultiHeadDotProductAttention_1/query/bias'] | |
key_weight = jax_weights[ | |
f'{jax_block}/MultiHeadDotProductAttention_1/key/kernel'] | |
key_bias = jax_weights[ | |
f'{jax_block}/MultiHeadDotProductAttention_1/key/bias'] | |
value_weight = jax_weights[ | |
f'{jax_block}/MultiHeadDotProductAttention_1/value/kernel'] | |
value_bias = jax_weights[ | |
f'{jax_block}/MultiHeadDotProductAttention_1/value/bias'] | |
qkv_weight = torch.from_numpy( | |
np.stack((query_weight, key_weight, value_weight), 1)) | |
qkv_weight = torch.flatten(qkv_weight, start_dim=1) | |
qkv_bias = torch.from_numpy( | |
np.stack((query_bias, key_bias, value_bias), 0)) | |
qkv_bias = torch.flatten(qkv_bias, start_dim=0) | |
torch_weights[f'{torch_block}.attn.attn.in_proj_weight'] = qkv_weight | |
torch_weights[f'{torch_block}.attn.attn.in_proj_bias'] = qkv_bias | |
to_out_weight = jax_weights[ | |
f'{jax_block}/MultiHeadDotProductAttention_1/out/kernel'] | |
to_out_weight = torch.flatten(to_out_weight, start_dim=0, end_dim=1) | |
torch_weights[ | |
f'{torch_block}.attn.attn.out_proj.weight'] = to_out_weight | |
torch_weights[f'{torch_block}.attn.attn.out_proj.bias'] = jax_weights[ | |
f'{jax_block}/MultiHeadDotProductAttention_1/out/bias'] | |
# mlp norm | |
torch_weights[f'{torch_block}.ln2.weight'] = jax_weights[ | |
f'{jax_block}/LayerNorm_2/scale'] | |
torch_weights[f'{torch_block}.ln2.bias'] = jax_weights[ | |
f'{jax_block}/LayerNorm_2/bias'] | |
# mlp | |
torch_weights[f'{torch_block}.ffn.layers.0.0.weight'] = jax_weights[ | |
f'{jax_block}/MlpBlock_3/Dense_0/kernel'] | |
torch_weights[f'{torch_block}.ffn.layers.0.0.bias'] = jax_weights[ | |
f'{jax_block}/MlpBlock_3/Dense_0/bias'] | |
torch_weights[f'{torch_block}.ffn.layers.1.weight'] = jax_weights[ | |
f'{jax_block}/MlpBlock_3/Dense_1/kernel'] | |
torch_weights[f'{torch_block}.ffn.layers.1.bias'] = jax_weights[ | |
f'{jax_block}/MlpBlock_3/Dense_1/bias'] | |
# transpose weights | |
for k, v in torch_weights.items(): | |
if 'weight' in k and 'patch_embed' not in k and 'ln' not in k: | |
v = v.permute(1, 0) | |
torch_weights[k] = v | |
return torch_weights | |
def main(): | |
# stole refactoring code from Robin Strudel, thanks | |
parser = argparse.ArgumentParser( | |
description='Convert keys from jax official pretrained vit models to ' | |
'MMSegmentation style.') | |
parser.add_argument('src', help='src model path or url') | |
# The dst path must be a full path of the new checkpoint. | |
parser.add_argument('dst', help='save path') | |
args = parser.parse_args() | |
jax_weights = np.load(args.src) | |
jax_weights_tensor = {} | |
for key in jax_weights.files: | |
value = torch.from_numpy(jax_weights[key]) | |
jax_weights_tensor[key] = value | |
if 'L_16-i21k' in args.src: | |
num_layer = 24 | |
else: | |
num_layer = 12 | |
torch_weights = vit_jax_to_torch(jax_weights_tensor, num_layer) | |
mmengine.mkdir_or_exist(osp.dirname(args.dst)) | |
torch.save(torch_weights, args.dst) | |
if __name__ == '__main__': | |
main() | |