Spaces:
Runtime error
Runtime error
# Copyright (c) OpenMMLab. All rights reserved. | |
import argparse | |
import glob | |
import math | |
import os | |
import os.path as osp | |
import tempfile | |
import zipfile | |
import mmcv | |
import numpy as np | |
from mmengine.utils import ProgressBar, mkdir_or_exist | |
def parse_args(): | |
parser = argparse.ArgumentParser( | |
description='Convert potsdam dataset to mmsegmentation format') | |
parser.add_argument('dataset_path', help='potsdam folder path') | |
parser.add_argument('--tmp_dir', help='path of the temporary directory') | |
parser.add_argument('-o', '--out_dir', help='output path') | |
parser.add_argument( | |
'--clip_size', | |
type=int, | |
help='clipped size of image after preparation', | |
default=512) | |
parser.add_argument( | |
'--stride_size', | |
type=int, | |
help='stride of clipping original images', | |
default=256) | |
args = parser.parse_args() | |
return args | |
def clip_big_image(image_path, clip_save_dir, args, to_label=False): | |
# Original image of Potsdam dataset is very large, thus pre-processing | |
# of them is adopted. Given fixed clip size and stride size to generate | |
# clipped image, the intersection of width and height is determined. | |
# For example, given one 5120 x 5120 original image, the clip size is | |
# 512 and stride size is 256, thus it would generate 20x20 = 400 images | |
# whose size are all 512x512. | |
image = mmcv.imread(image_path) | |
h, w, c = image.shape | |
clip_size = args.clip_size | |
stride_size = args.stride_size | |
num_rows = math.ceil((h - clip_size) / stride_size) if math.ceil( | |
(h - clip_size) / | |
stride_size) * stride_size + clip_size >= h else math.ceil( | |
(h - clip_size) / stride_size) + 1 | |
num_cols = math.ceil((w - clip_size) / stride_size) if math.ceil( | |
(w - clip_size) / | |
stride_size) * stride_size + clip_size >= w else math.ceil( | |
(w - clip_size) / stride_size) + 1 | |
x, y = np.meshgrid(np.arange(num_cols + 1), np.arange(num_rows + 1)) | |
xmin = x * clip_size | |
ymin = y * clip_size | |
xmin = xmin.ravel() | |
ymin = ymin.ravel() | |
xmin_offset = np.where(xmin + clip_size > w, w - xmin - clip_size, | |
np.zeros_like(xmin)) | |
ymin_offset = np.where(ymin + clip_size > h, h - ymin - clip_size, | |
np.zeros_like(ymin)) | |
boxes = np.stack([ | |
xmin + xmin_offset, ymin + ymin_offset, | |
np.minimum(xmin + clip_size, w), | |
np.minimum(ymin + clip_size, h) | |
], | |
axis=1) | |
if to_label: | |
color_map = np.array([[0, 0, 0], [255, 255, 255], [255, 0, 0], | |
[255, 255, 0], [0, 255, 0], [0, 255, 255], | |
[0, 0, 255]]) | |
flatten_v = np.matmul( | |
image.reshape(-1, c), | |
np.array([2, 3, 4]).reshape(3, 1)) | |
out = np.zeros_like(flatten_v) | |
for idx, class_color in enumerate(color_map): | |
value_idx = np.matmul(class_color, | |
np.array([2, 3, 4]).reshape(3, 1)) | |
out[flatten_v == value_idx] = idx | |
image = out.reshape(h, w) | |
for box in boxes: | |
start_x, start_y, end_x, end_y = box | |
clipped_image = image[start_y:end_y, | |
start_x:end_x] if to_label else image[ | |
start_y:end_y, start_x:end_x, :] | |
idx_i, idx_j = osp.basename(image_path).split('_')[2:4] | |
mmcv.imwrite( | |
clipped_image.astype(np.uint8), | |
osp.join( | |
clip_save_dir, | |
f'{idx_i}_{idx_j}_{start_x}_{start_y}_{end_x}_{end_y}.png')) | |
def main(): | |
args = parse_args() | |
splits = { | |
'train': [ | |
'2_10', '2_11', '2_12', '3_10', '3_11', '3_12', '4_10', '4_11', | |
'4_12', '5_10', '5_11', '5_12', '6_10', '6_11', '6_12', '6_7', | |
'6_8', '6_9', '7_10', '7_11', '7_12', '7_7', '7_8', '7_9' | |
], | |
'val': [ | |
'5_15', '6_15', '6_13', '3_13', '4_14', '6_14', '5_14', '2_13', | |
'4_15', '2_14', '5_13', '4_13', '3_14', '7_13' | |
] | |
} | |
dataset_path = args.dataset_path | |
if args.out_dir is None: | |
out_dir = osp.join('data', 'potsdam') | |
else: | |
out_dir = args.out_dir | |
print('Making directories...') | |
mkdir_or_exist(osp.join(out_dir, 'img_dir', 'train')) | |
mkdir_or_exist(osp.join(out_dir, 'img_dir', 'val')) | |
mkdir_or_exist(osp.join(out_dir, 'ann_dir', 'train')) | |
mkdir_or_exist(osp.join(out_dir, 'ann_dir', 'val')) | |
zipp_list = glob.glob(os.path.join(dataset_path, '*.zip')) | |
print('Find the data', zipp_list) | |
for zipp in zipp_list: | |
with tempfile.TemporaryDirectory(dir=args.tmp_dir) as tmp_dir: | |
zip_file = zipfile.ZipFile(zipp) | |
zip_file.extractall(tmp_dir) | |
src_path_list = glob.glob(os.path.join(tmp_dir, '*.tif')) | |
if not len(src_path_list): | |
sub_tmp_dir = os.path.join(tmp_dir, os.listdir(tmp_dir)[0]) | |
src_path_list = glob.glob(os.path.join(sub_tmp_dir, '*.tif')) | |
prog_bar = ProgressBar(len(src_path_list)) | |
for i, src_path in enumerate(src_path_list): | |
idx_i, idx_j = osp.basename(src_path).split('_')[2:4] | |
data_type = 'train' if f'{idx_i}_{idx_j}' in splits[ | |
'train'] else 'val' | |
if 'label' in src_path: | |
dst_dir = osp.join(out_dir, 'ann_dir', data_type) | |
clip_big_image(src_path, dst_dir, args, to_label=True) | |
else: | |
dst_dir = osp.join(out_dir, 'img_dir', data_type) | |
clip_big_image(src_path, dst_dir, args, to_label=False) | |
prog_bar.update() | |
print('Removing the temporary files...') | |
print('Done!') | |
if __name__ == '__main__': | |
main() | |