Spaces:
Runtime error
Runtime error
File size: 9,014 Bytes
3b96cb1 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 |
# Copyright (c) OpenMMLab. All rights reserved.
from typing import Dict, List, Optional, Sequence, Union
import torch
import torch.nn as nn
import torch.nn.functional as F
from mmcv.cnn import build_conv_layer, build_norm_layer, build_upsample_layer
from mmengine.model import BaseModule
from torch import Tensor
from mmseg.registry import MODELS
from mmseg.utils import SampleList
from ..builder import build_loss
from ..utils import resize
from .decode_head import BaseDecodeHead
class VPDDepthDecoder(BaseModule):
"""VPD Depth Decoder class.
Args:
in_channels (int): Number of input channels.
out_channels (int): Number of output channels.
num_deconv_layers (int): Number of deconvolution layers.
num_deconv_filters (List[int]): List of output channels for
deconvolution layers.
init_cfg (Optional[Union[Dict, List[Dict]]], optional): Configuration
for weight initialization. Defaults to Normal for Conv2d and
ConvTranspose2d layers.
"""
def __init__(self,
in_channels: int,
out_channels: int,
num_deconv_layers: int,
num_deconv_filters: List[int],
init_cfg: Optional[Union[Dict, List[Dict]]] = dict(
type='Normal',
std=0.001,
layer=['Conv2d', 'ConvTranspose2d'])):
super().__init__(init_cfg=init_cfg)
self.in_channels = in_channels
self.deconv_layers = self._make_deconv_layer(
num_deconv_layers,
num_deconv_filters,
)
conv_layers = []
conv_layers.append(
build_conv_layer(
dict(type='Conv2d'),
in_channels=num_deconv_filters[-1],
out_channels=out_channels,
kernel_size=3,
stride=1,
padding=1))
conv_layers.append(build_norm_layer(dict(type='BN'), out_channels)[1])
conv_layers.append(nn.ReLU(inplace=True))
self.conv_layers = nn.Sequential(*conv_layers)
self.up_sample = nn.Upsample(
scale_factor=2, mode='bilinear', align_corners=False)
def forward(self, x):
"""Forward pass through the decoder network."""
out = self.deconv_layers(x)
out = self.conv_layers(out)
out = self.up_sample(out)
out = self.up_sample(out)
return out
def _make_deconv_layer(self, num_layers, num_deconv_filters):
"""Make deconv layers."""
layers = []
in_channels = self.in_channels
for i in range(num_layers):
num_channels = num_deconv_filters[i]
layers.append(
build_upsample_layer(
dict(type='deconv'),
in_channels=in_channels,
out_channels=num_channels,
kernel_size=2,
stride=2,
padding=0,
output_padding=0,
bias=False))
layers.append(nn.BatchNorm2d(num_channels))
layers.append(nn.ReLU(inplace=True))
in_channels = num_channels
return nn.Sequential(*layers)
@MODELS.register_module()
class VPDDepthHead(BaseDecodeHead):
"""Depth Prediction Head for VPD.
.. _`VPD`: https://arxiv.org/abs/2303.02153
Args:
max_depth (float): Maximum depth value. Defaults to 10.0.
in_channels (Sequence[int]): Number of input channels for each
convolutional layer.
embed_dim (int): Dimension of embedding. Defaults to 192.
feature_dim (int): Dimension of aggregated feature. Defaults to 1536.
num_deconv_layers (int): Number of deconvolution layers in the
decoder. Defaults to 3.
num_deconv_filters (Sequence[int]): Number of filters for each deconv
layer. Defaults to (32, 32, 32).
fmap_border (Union[int, Sequence[int]]): Feature map border for
cropping. Defaults to 0.
align_corners (bool): Flag for align_corners in interpolation.
Defaults to False.
loss_decode (dict): Configurations for the loss function. Defaults to
dict(type='SiLogLoss').
init_cfg (dict): Initialization configurations. Defaults to
dict(type='TruncNormal', std=0.02, layer=['Conv2d', 'Linear']).
"""
num_classes = 1
out_channels = 1
input_transform = None
def __init__(
self,
max_depth: float = 10.0,
in_channels: Sequence[int] = [320, 640, 1280, 1280],
embed_dim: int = 192,
feature_dim: int = 1536,
num_deconv_layers: int = 3,
num_deconv_filters: Sequence[int] = (32, 32, 32),
fmap_border: Union[int, Sequence[int]] = 0,
align_corners: bool = False,
loss_decode: dict = dict(type='SiLogLoss'),
init_cfg=dict(
type='TruncNormal', std=0.02, layer=['Conv2d', 'Linear']),
):
super(BaseDecodeHead, self).__init__(init_cfg=init_cfg)
# initialize parameters
self.in_channels = in_channels
self.max_depth = max_depth
self.align_corners = align_corners
# feature map border
if isinstance(fmap_border, int):
fmap_border = (fmap_border, fmap_border)
self.fmap_border = fmap_border
# define network layers
self.conv1 = nn.Sequential(
nn.Conv2d(in_channels[0], in_channels[0], 3, stride=2, padding=1),
nn.GroupNorm(16, in_channels[0]),
nn.ReLU(),
nn.Conv2d(in_channels[0], in_channels[0], 3, stride=2, padding=1),
)
self.conv2 = nn.Conv2d(
in_channels[1], in_channels[1], 3, stride=2, padding=1)
self.conv_aggregation = nn.Sequential(
nn.Conv2d(sum(in_channels), feature_dim, 1),
nn.GroupNorm(16, feature_dim),
nn.ReLU(),
)
self.decoder = VPDDepthDecoder(
in_channels=embed_dim * 8,
out_channels=embed_dim,
num_deconv_layers=num_deconv_layers,
num_deconv_filters=num_deconv_filters)
self.depth_pred_layer = nn.Sequential(
nn.Conv2d(
embed_dim, embed_dim, kernel_size=3, stride=1, padding=1),
nn.ReLU(inplace=False),
nn.Conv2d(embed_dim, 1, kernel_size=3, stride=1, padding=1))
# build loss
if isinstance(loss_decode, dict):
self.loss_decode = build_loss(loss_decode)
elif isinstance(loss_decode, (list, tuple)):
self.loss_decode = nn.ModuleList()
for loss in loss_decode:
self.loss_decode.append(build_loss(loss))
else:
raise TypeError(f'loss_decode must be a dict or sequence of dict,\
but got {type(loss_decode)}')
def _stack_batch_gt(self, batch_data_samples: SampleList) -> Tensor:
gt_depth_maps = [
data_sample.gt_depth_map.data for data_sample in batch_data_samples
]
return torch.stack(gt_depth_maps, dim=0)
def forward(self, x):
x = [
x[0], x[1],
torch.cat([x[2], F.interpolate(x[3], scale_factor=2)], dim=1)
]
x = torch.cat([self.conv1(x[0]), self.conv2(x[1]), x[2]], dim=1)
x = self.conv_aggregation(x)
x = x[:, :, :x.size(2) - self.fmap_border[0], :x.size(3) -
self.fmap_border[1]].contiguous()
x = self.decoder(x)
out = self.depth_pred_layer(x)
depth = torch.sigmoid(out) * self.max_depth
return depth
def loss_by_feat(self, pred_depth_map: Tensor,
batch_data_samples: SampleList) -> dict:
"""Compute depth estimation loss.
Args:
pred_depth_map (Tensor): The output from decode head forward
function.
batch_data_samples (List[:obj:`SegDataSample`]): The seg
data samples. It usually includes information such
as `metainfo` and `gt_dpeth_map`.
Returns:
dict[str, Tensor]: a dictionary of loss components
"""
gt_depth_map = self._stack_batch_gt(batch_data_samples)
loss = dict()
pred_depth_map = resize(
input=pred_depth_map,
size=gt_depth_map.shape[2:],
mode='bilinear',
align_corners=self.align_corners)
if not isinstance(self.loss_decode, nn.ModuleList):
losses_decode = [self.loss_decode]
else:
losses_decode = self.loss_decode
for loss_decode in losses_decode:
if loss_decode.loss_name not in loss:
loss[loss_decode.loss_name] = loss_decode(
pred_depth_map, gt_depth_map)
else:
loss[loss_decode.loss_name] += loss_decode(
pred_depth_map, gt_depth_map)
return loss
|