Spaces:
Runtime error
Runtime error
File size: 19,105 Bytes
3b96cb1 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 |
# Copyright (c) OpenMMLab. All rights reserved.
from typing import List
import torch
import torch.nn as nn
import torch.nn.functional as F
from mmcv.cnn import ConvModule, build_activation_layer, build_norm_layer
from mmcv.cnn.bricks.transformer import (FFN, MultiheadAttention,
build_transformer_layer)
from mmengine.logging import print_log
from torch import Tensor
from mmseg.models.decode_heads.decode_head import BaseDecodeHead
from mmseg.registry import MODELS
from mmseg.utils import SampleList
@MODELS.register_module()
class KernelUpdator(nn.Module):
"""Dynamic Kernel Updator in Kernel Update Head.
Args:
in_channels (int): The number of channels of input feature map.
Default: 256.
feat_channels (int): The number of middle-stage channels in
the kernel updator. Default: 64.
out_channels (int): The number of output channels.
gate_sigmoid (bool): Whether use sigmoid function in gate
mechanism. Default: True.
gate_norm_act (bool): Whether add normalization and activation
layer in gate mechanism. Default: False.
activate_out: Whether add activation after gate mechanism.
Default: False.
norm_cfg (dict | None): Config of norm layers.
Default: dict(type='LN').
act_cfg (dict): Config of activation layers.
Default: dict(type='ReLU').
"""
def __init__(
self,
in_channels=256,
feat_channels=64,
out_channels=None,
gate_sigmoid=True,
gate_norm_act=False,
activate_out=False,
norm_cfg=dict(type='LN'),
act_cfg=dict(type='ReLU', inplace=True),
):
super().__init__()
self.in_channels = in_channels
self.feat_channels = feat_channels
self.out_channels_raw = out_channels
self.gate_sigmoid = gate_sigmoid
self.gate_norm_act = gate_norm_act
self.activate_out = activate_out
self.act_cfg = act_cfg
self.norm_cfg = norm_cfg
self.out_channels = out_channels if out_channels else in_channels
self.num_params_in = self.feat_channels
self.num_params_out = self.feat_channels
self.dynamic_layer = nn.Linear(
self.in_channels, self.num_params_in + self.num_params_out)
self.input_layer = nn.Linear(self.in_channels,
self.num_params_in + self.num_params_out,
1)
self.input_gate = nn.Linear(self.in_channels, self.feat_channels, 1)
self.update_gate = nn.Linear(self.in_channels, self.feat_channels, 1)
if self.gate_norm_act:
self.gate_norm = build_norm_layer(norm_cfg, self.feat_channels)[1]
self.norm_in = build_norm_layer(norm_cfg, self.feat_channels)[1]
self.norm_out = build_norm_layer(norm_cfg, self.feat_channels)[1]
self.input_norm_in = build_norm_layer(norm_cfg, self.feat_channels)[1]
self.input_norm_out = build_norm_layer(norm_cfg, self.feat_channels)[1]
self.activation = build_activation_layer(act_cfg)
self.fc_layer = nn.Linear(self.feat_channels, self.out_channels, 1)
self.fc_norm = build_norm_layer(norm_cfg, self.out_channels)[1]
def forward(self, update_feature, input_feature):
"""Forward function of KernelUpdator.
Args:
update_feature (torch.Tensor): Feature map assembled from
each group. It would be reshaped with last dimension
shape: `self.in_channels`.
input_feature (torch.Tensor): Intermediate feature
with shape: (N, num_classes, conv_kernel_size**2, channels).
Returns:
Tensor: The output tensor of shape (N*C1/C2, K*K, C2), where N is
the number of classes, C1 and C2 are the feature map channels of
KernelUpdateHead and KernelUpdator, respectively.
"""
update_feature = update_feature.reshape(-1, self.in_channels)
num_proposals = update_feature.size(0)
# dynamic_layer works for
# phi_1 and psi_3 in Eq.(4) and (5) of K-Net paper
parameters = self.dynamic_layer(update_feature)
param_in = parameters[:, :self.num_params_in].view(
-1, self.feat_channels)
param_out = parameters[:, -self.num_params_out:].view(
-1, self.feat_channels)
# input_layer works for
# phi_2 and psi_4 in Eq.(4) and (5) of K-Net paper
input_feats = self.input_layer(
input_feature.reshape(num_proposals, -1, self.feat_channels))
input_in = input_feats[..., :self.num_params_in]
input_out = input_feats[..., -self.num_params_out:]
# `gate_feats` is F^G in K-Net paper
gate_feats = input_in * param_in.unsqueeze(-2)
if self.gate_norm_act:
gate_feats = self.activation(self.gate_norm(gate_feats))
input_gate = self.input_norm_in(self.input_gate(gate_feats))
update_gate = self.norm_in(self.update_gate(gate_feats))
if self.gate_sigmoid:
input_gate = input_gate.sigmoid()
update_gate = update_gate.sigmoid()
param_out = self.norm_out(param_out)
input_out = self.input_norm_out(input_out)
if self.activate_out:
param_out = self.activation(param_out)
input_out = self.activation(input_out)
# Gate mechanism. Eq.(5) in original paper.
# param_out has shape (batch_size, feat_channels, out_channels)
features = update_gate * param_out.unsqueeze(
-2) + input_gate * input_out
features = self.fc_layer(features)
features = self.fc_norm(features)
features = self.activation(features)
return features
@MODELS.register_module()
class KernelUpdateHead(nn.Module):
"""Kernel Update Head in K-Net.
Args:
num_classes (int): Number of classes. Default: 150.
num_ffn_fcs (int): The number of fully-connected layers in
FFNs. Default: 2.
num_heads (int): The number of parallel attention heads.
Default: 8.
num_mask_fcs (int): The number of fully connected layers for
mask prediction. Default: 3.
feedforward_channels (int): The hidden dimension of FFNs.
Defaults: 2048.
in_channels (int): The number of channels of input feature map.
Default: 256.
out_channels (int): The number of output channels.
Default: 256.
dropout (float): The Probability of an element to be
zeroed in MultiheadAttention and FFN. Default 0.0.
act_cfg (dict): Config of activation layers.
Default: dict(type='ReLU').
ffn_act_cfg (dict): Config of activation layers in FFN.
Default: dict(type='ReLU').
conv_kernel_size (int): The kernel size of convolution in
Kernel Update Head for dynamic kernel updation.
Default: 1.
feat_transform_cfg (dict | None): Config of feature transform.
Default: None.
kernel_init (bool): Whether initiate mask kernel in mask head.
Default: False.
with_ffn (bool): Whether add FFN in kernel update head.
Default: True.
feat_gather_stride (int): Stride of convolution in feature transform.
Default: 1.
mask_transform_stride (int): Stride of mask transform.
Default: 1.
kernel_updator_cfg (dict): Config of kernel updator.
Default: dict(
type='DynamicConv',
in_channels=256,
feat_channels=64,
out_channels=256,
act_cfg=dict(type='ReLU', inplace=True),
norm_cfg=dict(type='LN')).
"""
def __init__(self,
num_classes=150,
num_ffn_fcs=2,
num_heads=8,
num_mask_fcs=3,
feedforward_channels=2048,
in_channels=256,
out_channels=256,
dropout=0.0,
act_cfg=dict(type='ReLU', inplace=True),
ffn_act_cfg=dict(type='ReLU', inplace=True),
conv_kernel_size=1,
feat_transform_cfg=None,
kernel_init=False,
with_ffn=True,
feat_gather_stride=1,
mask_transform_stride=1,
kernel_updator_cfg=dict(
type='DynamicConv',
in_channels=256,
feat_channels=64,
out_channels=256,
act_cfg=dict(type='ReLU', inplace=True),
norm_cfg=dict(type='LN'))):
super().__init__()
self.num_classes = num_classes
self.in_channels = in_channels
self.out_channels = out_channels
self.fp16_enabled = False
self.dropout = dropout
self.num_heads = num_heads
self.kernel_init = kernel_init
self.with_ffn = with_ffn
self.conv_kernel_size = conv_kernel_size
self.feat_gather_stride = feat_gather_stride
self.mask_transform_stride = mask_transform_stride
self.attention = MultiheadAttention(in_channels * conv_kernel_size**2,
num_heads, dropout)
self.attention_norm = build_norm_layer(
dict(type='LN'), in_channels * conv_kernel_size**2)[1]
self.kernel_update_conv = build_transformer_layer(kernel_updator_cfg)
if feat_transform_cfg is not None:
kernel_size = feat_transform_cfg.pop('kernel_size', 1)
transform_channels = in_channels
self.feat_transform = ConvModule(
transform_channels,
in_channels,
kernel_size,
stride=feat_gather_stride,
padding=int(feat_gather_stride // 2),
**feat_transform_cfg)
else:
self.feat_transform = None
if self.with_ffn:
self.ffn = FFN(
in_channels,
feedforward_channels,
num_ffn_fcs,
act_cfg=ffn_act_cfg,
dropout=dropout)
self.ffn_norm = build_norm_layer(dict(type='LN'), in_channels)[1]
self.mask_fcs = nn.ModuleList()
for _ in range(num_mask_fcs):
self.mask_fcs.append(
nn.Linear(in_channels, in_channels, bias=False))
self.mask_fcs.append(
build_norm_layer(dict(type='LN'), in_channels)[1])
self.mask_fcs.append(build_activation_layer(act_cfg))
self.fc_mask = nn.Linear(in_channels, out_channels)
def init_weights(self):
"""Use xavier initialization for all weight parameter and set
classification head bias as a specific value when use focal loss."""
for p in self.parameters():
if p.dim() > 1:
nn.init.xavier_uniform_(p)
else:
# adopt the default initialization for
# the weight and bias of the layer norm
pass
if self.kernel_init:
print_log(
'mask kernel in mask head is normal initialized by std 0.01')
nn.init.normal_(self.fc_mask.weight, mean=0, std=0.01)
def forward(self, x, proposal_feat, mask_preds, mask_shape=None):
"""Forward function of Dynamic Instance Interactive Head.
Args:
x (Tensor): Feature map from FPN with shape
(batch_size, feature_dimensions, H , W).
proposal_feat (Tensor): Intermediate feature get from
diihead in last stage, has shape
(batch_size, num_proposals, feature_dimensions)
mask_preds (Tensor): mask prediction from the former stage in shape
(batch_size, num_proposals, H, W).
Returns:
Tuple: The first tensor is predicted mask with shape
(N, num_classes, H, W), the second tensor is dynamic kernel
with shape (N, num_classes, channels, K, K).
"""
N, num_proposals = proposal_feat.shape[:2]
if self.feat_transform is not None:
x = self.feat_transform(x)
C, H, W = x.shape[-3:]
mask_h, mask_w = mask_preds.shape[-2:]
if mask_h != H or mask_w != W:
gather_mask = F.interpolate(
mask_preds, (H, W), align_corners=False, mode='bilinear')
else:
gather_mask = mask_preds
sigmoid_masks = gather_mask.softmax(dim=1)
# Group Feature Assembling. Eq.(3) in original paper.
# einsum is faster than bmm by 30%
x_feat = torch.einsum('bnhw,bchw->bnc', sigmoid_masks, x)
# obj_feat in shape [B, N, C, K, K] -> [B, N, C, K*K] -> [B, N, K*K, C]
proposal_feat = proposal_feat.reshape(N, num_proposals,
self.in_channels,
-1).permute(0, 1, 3, 2)
obj_feat = self.kernel_update_conv(x_feat, proposal_feat)
# [B, N, K*K, C] -> [B, N, K*K*C] -> [N, B, K*K*C]
obj_feat = obj_feat.reshape(N, num_proposals, -1).permute(1, 0, 2)
obj_feat = self.attention_norm(self.attention(obj_feat))
# [N, B, K*K*C] -> [B, N, K*K*C]
obj_feat = obj_feat.permute(1, 0, 2)
# obj_feat in shape [B, N, K*K*C] -> [B, N, K*K, C]
obj_feat = obj_feat.reshape(N, num_proposals, -1, self.in_channels)
# FFN
if self.with_ffn:
obj_feat = self.ffn_norm(self.ffn(obj_feat))
mask_feat = obj_feat
for reg_layer in self.mask_fcs:
mask_feat = reg_layer(mask_feat)
# [B, N, K*K, C] -> [B, N, C, K*K]
mask_feat = self.fc_mask(mask_feat).permute(0, 1, 3, 2)
if (self.mask_transform_stride == 2 and self.feat_gather_stride == 1):
mask_x = F.interpolate(
x, scale_factor=0.5, mode='bilinear', align_corners=False)
H, W = mask_x.shape[-2:]
else:
mask_x = x
# group conv is 5x faster than unfold and uses about 1/5 memory
# Group conv vs. unfold vs. concat batch, 2.9ms :13.5ms :3.8ms
# Group conv vs. unfold vs. concat batch, 278 : 1420 : 369
# but in real training group conv is slower than concat batch
# so we keep using concat batch.
# fold_x = F.unfold(
# mask_x,
# self.conv_kernel_size,
# padding=int(self.conv_kernel_size // 2))
# mask_feat = mask_feat.reshape(N, num_proposals, -1)
# new_mask_preds = torch.einsum('bnc,bcl->bnl', mask_feat, fold_x)
# [B, N, C, K*K] -> [B*N, C, K, K]
mask_feat = mask_feat.reshape(N, num_proposals, C,
self.conv_kernel_size,
self.conv_kernel_size)
# [B, C, H, W] -> [1, B*C, H, W]
new_mask_preds = []
for i in range(N):
new_mask_preds.append(
F.conv2d(
mask_x[i:i + 1],
mask_feat[i],
padding=int(self.conv_kernel_size // 2)))
new_mask_preds = torch.cat(new_mask_preds, dim=0)
new_mask_preds = new_mask_preds.reshape(N, num_proposals, H, W)
if self.mask_transform_stride == 2:
new_mask_preds = F.interpolate(
new_mask_preds,
scale_factor=2,
mode='bilinear',
align_corners=False)
if mask_shape is not None and mask_shape[0] != H:
new_mask_preds = F.interpolate(
new_mask_preds,
mask_shape,
align_corners=False,
mode='bilinear')
return new_mask_preds, obj_feat.permute(0, 1, 3, 2).reshape(
N, num_proposals, self.in_channels, self.conv_kernel_size,
self.conv_kernel_size)
@MODELS.register_module()
class IterativeDecodeHead(BaseDecodeHead):
"""K-Net: Towards Unified Image Segmentation.
This head is the implementation of
`K-Net: <https://arxiv.org/abs/2106.14855>`_.
Args:
num_stages (int): The number of stages (kernel update heads)
in IterativeDecodeHead. Default: 3.
kernel_generate_head:(dict): Config of kernel generate head which
generate mask predictions, dynamic kernels and class predictions
for next kernel update heads.
kernel_update_head (dict): Config of kernel update head which refine
dynamic kernels and class predictions iteratively.
"""
def __init__(self, num_stages, kernel_generate_head, kernel_update_head,
**kwargs):
# ``IterativeDecodeHead`` would skip initialization of
# ``BaseDecodeHead`` which would be called when building
# ``self.kernel_generate_head``.
super(BaseDecodeHead, self).__init__(**kwargs)
assert num_stages == len(kernel_update_head)
self.num_stages = num_stages
self.kernel_generate_head = MODELS.build(kernel_generate_head)
self.kernel_update_head = nn.ModuleList()
self.align_corners = self.kernel_generate_head.align_corners
self.num_classes = self.kernel_generate_head.num_classes
self.input_transform = self.kernel_generate_head.input_transform
self.ignore_index = self.kernel_generate_head.ignore_index
self.out_channels = self.num_classes
for head_cfg in kernel_update_head:
self.kernel_update_head.append(MODELS.build(head_cfg))
def forward(self, inputs):
"""Forward function."""
feats = self.kernel_generate_head._forward_feature(inputs)
sem_seg = self.kernel_generate_head.cls_seg(feats)
seg_kernels = self.kernel_generate_head.conv_seg.weight.clone()
seg_kernels = seg_kernels[None].expand(
feats.size(0), *seg_kernels.size())
stage_segs = [sem_seg]
for i in range(self.num_stages):
sem_seg, seg_kernels = self.kernel_update_head[i](feats,
seg_kernels,
sem_seg)
stage_segs.append(sem_seg)
if self.training:
return stage_segs
# only return the prediction of the last stage during testing
return stage_segs[-1]
def loss_by_feat(self, seg_logits: List[Tensor],
batch_data_samples: SampleList, **kwargs) -> dict:
losses = dict()
for i, logit in enumerate(seg_logits):
loss = self.kernel_generate_head.loss_by_feat(
logit, batch_data_samples)
for k, v in loss.items():
losses[f'{k}.s{i}'] = v
return losses
|