Spaces:
Runtime error
Runtime error
File size: 8,298 Bytes
3b96cb1 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 |
# Copyright (c) OpenMMLab. All rights reserved.
# Originally from https://github.com/visual-attention-network/segnext
# Licensed under the Apache License, Version 2.0 (the "License")
import torch
import torch.nn as nn
import torch.nn.functional as F
from mmcv.cnn import ConvModule
from mmengine.device import get_device
from mmseg.registry import MODELS
from ..utils import resize
from .decode_head import BaseDecodeHead
class Matrix_Decomposition_2D_Base(nn.Module):
"""Base class of 2D Matrix Decomposition.
Args:
MD_S (int): The number of spatial coefficient in
Matrix Decomposition, it may be used for calculation
of the number of latent dimension D in Matrix
Decomposition. Defaults: 1.
MD_R (int): The number of latent dimension R in
Matrix Decomposition. Defaults: 64.
train_steps (int): The number of iteration steps in
Multiplicative Update (MU) rule to solve Non-negative
Matrix Factorization (NMF) in training. Defaults: 6.
eval_steps (int): The number of iteration steps in
Multiplicative Update (MU) rule to solve Non-negative
Matrix Factorization (NMF) in evaluation. Defaults: 7.
inv_t (int): Inverted multiple number to make coefficient
smaller in softmax. Defaults: 100.
rand_init (bool): Whether to initialize randomly.
Defaults: True.
"""
def __init__(self,
MD_S=1,
MD_R=64,
train_steps=6,
eval_steps=7,
inv_t=100,
rand_init=True):
super().__init__()
self.S = MD_S
self.R = MD_R
self.train_steps = train_steps
self.eval_steps = eval_steps
self.inv_t = inv_t
self.rand_init = rand_init
def _build_bases(self, B, S, D, R, device=None):
raise NotImplementedError
def local_step(self, x, bases, coef):
raise NotImplementedError
def local_inference(self, x, bases):
# (B * S, D, N)^T @ (B * S, D, R) -> (B * S, N, R)
coef = torch.bmm(x.transpose(1, 2), bases)
coef = F.softmax(self.inv_t * coef, dim=-1)
steps = self.train_steps if self.training else self.eval_steps
for _ in range(steps):
bases, coef = self.local_step(x, bases, coef)
return bases, coef
def compute_coef(self, x, bases, coef):
raise NotImplementedError
def forward(self, x, return_bases=False):
"""Forward Function."""
B, C, H, W = x.shape
# (B, C, H, W) -> (B * S, D, N)
D = C // self.S
N = H * W
x = x.view(B * self.S, D, N)
if not self.rand_init and not hasattr(self, 'bases'):
bases = self._build_bases(1, self.S, D, self.R, device=x.device)
self.register_buffer('bases', bases)
# (S, D, R) -> (B * S, D, R)
if self.rand_init:
bases = self._build_bases(B, self.S, D, self.R, device=x.device)
else:
bases = self.bases.repeat(B, 1, 1)
bases, coef = self.local_inference(x, bases)
# (B * S, N, R)
coef = self.compute_coef(x, bases, coef)
# (B * S, D, R) @ (B * S, N, R)^T -> (B * S, D, N)
x = torch.bmm(bases, coef.transpose(1, 2))
# (B * S, D, N) -> (B, C, H, W)
x = x.view(B, C, H, W)
return x
class NMF2D(Matrix_Decomposition_2D_Base):
"""Non-negative Matrix Factorization (NMF) module.
It is inherited from ``Matrix_Decomposition_2D_Base`` module.
"""
def __init__(self, args=dict()):
super().__init__(**args)
self.inv_t = 1
def _build_bases(self, B, S, D, R, device=None):
"""Build bases in initialization."""
if device is None:
device = get_device()
bases = torch.rand((B * S, D, R)).to(device)
bases = F.normalize(bases, dim=1)
return bases
def local_step(self, x, bases, coef):
"""Local step in iteration to renew bases and coefficient."""
# (B * S, D, N)^T @ (B * S, D, R) -> (B * S, N, R)
numerator = torch.bmm(x.transpose(1, 2), bases)
# (B * S, N, R) @ [(B * S, D, R)^T @ (B * S, D, R)] -> (B * S, N, R)
denominator = coef.bmm(bases.transpose(1, 2).bmm(bases))
# Multiplicative Update
coef = coef * numerator / (denominator + 1e-6)
# (B * S, D, N) @ (B * S, N, R) -> (B * S, D, R)
numerator = torch.bmm(x, coef)
# (B * S, D, R) @ [(B * S, N, R)^T @ (B * S, N, R)] -> (B * S, D, R)
denominator = bases.bmm(coef.transpose(1, 2).bmm(coef))
# Multiplicative Update
bases = bases * numerator / (denominator + 1e-6)
return bases, coef
def compute_coef(self, x, bases, coef):
"""Compute coefficient."""
# (B * S, D, N)^T @ (B * S, D, R) -> (B * S, N, R)
numerator = torch.bmm(x.transpose(1, 2), bases)
# (B * S, N, R) @ (B * S, D, R)^T @ (B * S, D, R) -> (B * S, N, R)
denominator = coef.bmm(bases.transpose(1, 2).bmm(bases))
# multiplication update
coef = coef * numerator / (denominator + 1e-6)
return coef
class Hamburger(nn.Module):
"""Hamburger Module. It consists of one slice of "ham" (matrix
decomposition) and two slices of "bread" (linear transformation).
Args:
ham_channels (int): Input and output channels of feature.
ham_kwargs (dict): Config of matrix decomposition module.
norm_cfg (dict | None): Config of norm layers.
"""
def __init__(self,
ham_channels=512,
ham_kwargs=dict(),
norm_cfg=None,
**kwargs):
super().__init__()
self.ham_in = ConvModule(
ham_channels, ham_channels, 1, norm_cfg=None, act_cfg=None)
self.ham = NMF2D(ham_kwargs)
self.ham_out = ConvModule(
ham_channels, ham_channels, 1, norm_cfg=norm_cfg, act_cfg=None)
def forward(self, x):
enjoy = self.ham_in(x)
enjoy = F.relu(enjoy, inplace=True)
enjoy = self.ham(enjoy)
enjoy = self.ham_out(enjoy)
ham = F.relu(x + enjoy, inplace=True)
return ham
@MODELS.register_module()
class LightHamHead(BaseDecodeHead):
"""SegNeXt decode head.
This decode head is the implementation of `SegNeXt: Rethinking
Convolutional Attention Design for Semantic
Segmentation <https://arxiv.org/abs/2209.08575>`_.
Inspiration from https://github.com/visual-attention-network/segnext.
Specifically, LightHamHead is inspired by HamNet from
`Is Attention Better Than Matrix Decomposition?
<https://arxiv.org/abs/2109.04553>`.
Args:
ham_channels (int): input channels for Hamburger.
Defaults: 512.
ham_kwargs (int): kwagrs for Ham. Defaults: dict().
"""
def __init__(self, ham_channels=512, ham_kwargs=dict(), **kwargs):
super().__init__(input_transform='multiple_select', **kwargs)
self.ham_channels = ham_channels
self.squeeze = ConvModule(
sum(self.in_channels),
self.ham_channels,
1,
conv_cfg=self.conv_cfg,
norm_cfg=self.norm_cfg,
act_cfg=self.act_cfg)
self.hamburger = Hamburger(ham_channels, ham_kwargs, **kwargs)
self.align = ConvModule(
self.ham_channels,
self.channels,
1,
conv_cfg=self.conv_cfg,
norm_cfg=self.norm_cfg,
act_cfg=self.act_cfg)
def forward(self, inputs):
"""Forward function."""
inputs = self._transform_inputs(inputs)
inputs = [
resize(
level,
size=inputs[0].shape[2:],
mode='bilinear',
align_corners=self.align_corners) for level in inputs
]
inputs = torch.cat(inputs, dim=1)
# apply a conv block to squeeze feature map
x = self.squeeze(inputs)
# apply hamburger module
x = self.hamburger(x)
# apply a conv block to align feature map
output = self.align(x)
output = self.cls_seg(output)
return output
|