File size: 23,612 Bytes
3b96cb1
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
# Copyright (c) OpenMMLab. All rights reserved.
import math
import warnings

import torch
import torch.nn as nn
import torch.nn.functional as F
from mmcv.cnn import build_norm_layer
from mmcv.cnn.bricks.drop import build_dropout
from mmcv.cnn.bricks.transformer import FFN
from mmengine.model import BaseModule, ModuleList
from mmengine.model.weight_init import (constant_init, normal_init,
                                        trunc_normal_init)
from torch.nn.modules.batchnorm import _BatchNorm

from mmseg.models.backbones.mit import EfficientMultiheadAttention
from mmseg.registry import MODELS
from ..utils.embed import PatchEmbed


class GlobalSubsampledAttention(EfficientMultiheadAttention):
    """Global Sub-sampled Attention (Spatial Reduction Attention)

    This module is modified from EfficientMultiheadAttention,
    which is a module from mmseg.models.backbones.mit.py.
    Specifically, there is no difference between
    `GlobalSubsampledAttention` and `EfficientMultiheadAttention`,
    `GlobalSubsampledAttention` is built as a brand new class
    because it is renamed as `Global sub-sampled attention (GSA)`
    in paper.


    Args:
        embed_dims (int): The embedding dimension.
        num_heads (int): Parallel attention heads.
        attn_drop (float): A Dropout layer on attn_output_weights.
            Default: 0.0.
        proj_drop (float): A Dropout layer after `nn.MultiheadAttention`.
            Default: 0.0.
        dropout_layer (obj:`ConfigDict`): The dropout_layer used
            when adding the shortcut. Default: None.
        batch_first (bool): Key, Query and Value are shape of
            (batch, n, embed_dims)
            or (n, batch, embed_dims). Default: False.
        qkv_bias (bool): enable bias for qkv if True. Default: True.
        norm_cfg (dict): Config dict for normalization layer.
            Default: dict(type='LN').
        sr_ratio (int): The ratio of spatial reduction of GSA of PCPVT.
            Default: 1.
        init_cfg (dict, optional): The Config for initialization.
            Defaults to None.
    """

    def __init__(self,
                 embed_dims,
                 num_heads,
                 attn_drop=0.,
                 proj_drop=0.,
                 dropout_layer=None,
                 batch_first=True,
                 qkv_bias=True,
                 norm_cfg=dict(type='LN'),
                 sr_ratio=1,
                 init_cfg=None):
        super().__init__(
            embed_dims,
            num_heads,
            attn_drop=attn_drop,
            proj_drop=proj_drop,
            dropout_layer=dropout_layer,
            batch_first=batch_first,
            qkv_bias=qkv_bias,
            norm_cfg=norm_cfg,
            sr_ratio=sr_ratio,
            init_cfg=init_cfg)


class GSAEncoderLayer(BaseModule):
    """Implements one encoder layer with GSA.

    Args:
        embed_dims (int): The feature dimension.
        num_heads (int): Parallel attention heads.
        feedforward_channels (int): The hidden dimension for FFNs.
        drop_rate (float): Probability of an element to be zeroed
            after the feed forward layer. Default: 0.0.
        attn_drop_rate (float): The drop out rate for attention layer.
            Default: 0.0.
        drop_path_rate (float): Stochastic depth rate. Default 0.0.
        num_fcs (int): The number of fully-connected layers for FFNs.
            Default: 2.
        qkv_bias (bool): Enable bias for qkv if True. Default: True
        act_cfg (dict): The activation config for FFNs.
            Default: dict(type='GELU').
        norm_cfg (dict): Config dict for normalization layer.
            Default: dict(type='LN').
        sr_ratio (float): Kernel_size of conv in Attention modules. Default: 1.
        init_cfg (dict, optional): The Config for initialization.
            Defaults to None.
    """

    def __init__(self,
                 embed_dims,
                 num_heads,
                 feedforward_channels,
                 drop_rate=0.,
                 attn_drop_rate=0.,
                 drop_path_rate=0.,
                 num_fcs=2,
                 qkv_bias=True,
                 act_cfg=dict(type='GELU'),
                 norm_cfg=dict(type='LN'),
                 sr_ratio=1.,
                 init_cfg=None):
        super().__init__(init_cfg=init_cfg)

        self.norm1 = build_norm_layer(norm_cfg, embed_dims, postfix=1)[1]
        self.attn = GlobalSubsampledAttention(
            embed_dims=embed_dims,
            num_heads=num_heads,
            attn_drop=attn_drop_rate,
            proj_drop=drop_rate,
            dropout_layer=dict(type='DropPath', drop_prob=drop_path_rate),
            qkv_bias=qkv_bias,
            norm_cfg=norm_cfg,
            sr_ratio=sr_ratio)

        self.norm2 = build_norm_layer(norm_cfg, embed_dims, postfix=2)[1]
        self.ffn = FFN(
            embed_dims=embed_dims,
            feedforward_channels=feedforward_channels,
            num_fcs=num_fcs,
            ffn_drop=drop_rate,
            dropout_layer=dict(type='DropPath', drop_prob=drop_path_rate),
            act_cfg=act_cfg,
            add_identity=False)

        self.drop_path = build_dropout(
            dict(type='DropPath', drop_prob=drop_path_rate)
        ) if drop_path_rate > 0. else nn.Identity()

    def forward(self, x, hw_shape):
        x = x + self.drop_path(self.attn(self.norm1(x), hw_shape, identity=0.))
        x = x + self.drop_path(self.ffn(self.norm2(x)))
        return x


class LocallyGroupedSelfAttention(BaseModule):
    """Locally-grouped Self Attention (LSA) module.

    Args:
        embed_dims (int): Number of input channels.
        num_heads (int): Number of attention heads. Default: 8
        qkv_bias (bool, optional):  If True, add a learnable bias to q, k, v.
            Default: False.
        qk_scale (float | None, optional): Override default qk scale of
            head_dim ** -0.5 if set. Default: None.
        attn_drop_rate (float, optional): Dropout ratio of attention weight.
            Default: 0.0
        proj_drop_rate (float, optional): Dropout ratio of output. Default: 0.
        window_size(int): Window size of LSA. Default: 1.
        init_cfg (dict, optional): The Config for initialization.
            Defaults to None.
    """

    def __init__(self,
                 embed_dims,
                 num_heads=8,
                 qkv_bias=False,
                 qk_scale=None,
                 attn_drop_rate=0.,
                 proj_drop_rate=0.,
                 window_size=1,
                 init_cfg=None):
        super().__init__(init_cfg=init_cfg)

        assert embed_dims % num_heads == 0, f'dim {embed_dims} should be ' \
                                            f'divided by num_heads ' \
                                            f'{num_heads}.'
        self.embed_dims = embed_dims
        self.num_heads = num_heads
        head_dim = embed_dims // num_heads
        self.scale = qk_scale or head_dim**-0.5

        self.qkv = nn.Linear(embed_dims, embed_dims * 3, bias=qkv_bias)
        self.attn_drop = nn.Dropout(attn_drop_rate)
        self.proj = nn.Linear(embed_dims, embed_dims)
        self.proj_drop = nn.Dropout(proj_drop_rate)
        self.window_size = window_size

    def forward(self, x, hw_shape):
        b, n, c = x.shape
        h, w = hw_shape
        x = x.view(b, h, w, c)

        # pad feature maps to multiples of Local-groups
        pad_l = pad_t = 0
        pad_r = (self.window_size - w % self.window_size) % self.window_size
        pad_b = (self.window_size - h % self.window_size) % self.window_size
        x = F.pad(x, (0, 0, pad_l, pad_r, pad_t, pad_b))

        # calculate attention mask for LSA
        Hp, Wp = x.shape[1:-1]
        _h, _w = Hp // self.window_size, Wp // self.window_size
        mask = torch.zeros((1, Hp, Wp), device=x.device)
        mask[:, -pad_b:, :].fill_(1)
        mask[:, :, -pad_r:].fill_(1)

        # [B, _h, _w, window_size, window_size, C]
        x = x.reshape(b, _h, self.window_size, _w, self.window_size,
                      c).transpose(2, 3)
        mask = mask.reshape(1, _h, self.window_size, _w,
                            self.window_size).transpose(2, 3).reshape(
                                1, _h * _w,
                                self.window_size * self.window_size)
        # [1, _h*_w, window_size*window_size, window_size*window_size]
        attn_mask = mask.unsqueeze(2) - mask.unsqueeze(3)
        attn_mask = attn_mask.masked_fill(attn_mask != 0,
                                          float(-1000.0)).masked_fill(
                                              attn_mask == 0, float(0.0))

        # [3, B, _w*_h, nhead, window_size*window_size, dim]
        qkv = self.qkv(x).reshape(b, _h * _w,
                                  self.window_size * self.window_size, 3,
                                  self.num_heads, c // self.num_heads).permute(
                                      3, 0, 1, 4, 2, 5)
        q, k, v = qkv[0], qkv[1], qkv[2]
        # [B, _h*_w, n_head, window_size*window_size, window_size*window_size]
        attn = (q @ k.transpose(-2, -1)) * self.scale
        attn = attn + attn_mask.unsqueeze(2)
        attn = attn.softmax(dim=-1)
        attn = self.attn_drop(attn)
        attn = (attn @ v).transpose(2, 3).reshape(b, _h, _w, self.window_size,
                                                  self.window_size, c)
        x = attn.transpose(2, 3).reshape(b, _h * self.window_size,
                                         _w * self.window_size, c)
        if pad_r > 0 or pad_b > 0:
            x = x[:, :h, :w, :].contiguous()

        x = x.reshape(b, n, c)
        x = self.proj(x)
        x = self.proj_drop(x)
        return x


class LSAEncoderLayer(BaseModule):
    """Implements one encoder layer in Twins-SVT.

    Args:
        embed_dims (int): The feature dimension.
        num_heads (int): Parallel attention heads.
        feedforward_channels (int): The hidden dimension for FFNs.
        drop_rate (float): Probability of an element to be zeroed
            after the feed forward layer. Default: 0.0.
        attn_drop_rate (float, optional): Dropout ratio of attention weight.
           Default: 0.0
        drop_path_rate (float): Stochastic depth rate. Default 0.0.
        num_fcs (int): The number of fully-connected layers for FFNs.
            Default: 2.
        qkv_bias (bool): Enable bias for qkv if True. Default: True
        qk_scale (float | None, optional): Override default qk scale of
           head_dim ** -0.5 if set. Default: None.
        act_cfg (dict): The activation config for FFNs.
            Default: dict(type='GELU').
        norm_cfg (dict): Config dict for normalization layer.
            Default: dict(type='LN').
        window_size (int): Window size of LSA. Default: 1.
        init_cfg (dict, optional): The Config for initialization.
            Defaults to None.
    """

    def __init__(self,
                 embed_dims,
                 num_heads,
                 feedforward_channels,
                 drop_rate=0.,
                 attn_drop_rate=0.,
                 drop_path_rate=0.,
                 num_fcs=2,
                 qkv_bias=True,
                 qk_scale=None,
                 act_cfg=dict(type='GELU'),
                 norm_cfg=dict(type='LN'),
                 window_size=1,
                 init_cfg=None):

        super().__init__(init_cfg=init_cfg)

        self.norm1 = build_norm_layer(norm_cfg, embed_dims, postfix=1)[1]
        self.attn = LocallyGroupedSelfAttention(embed_dims, num_heads,
                                                qkv_bias, qk_scale,
                                                attn_drop_rate, drop_rate,
                                                window_size)

        self.norm2 = build_norm_layer(norm_cfg, embed_dims, postfix=2)[1]
        self.ffn = FFN(
            embed_dims=embed_dims,
            feedforward_channels=feedforward_channels,
            num_fcs=num_fcs,
            ffn_drop=drop_rate,
            dropout_layer=dict(type='DropPath', drop_prob=drop_path_rate),
            act_cfg=act_cfg,
            add_identity=False)

        self.drop_path = build_dropout(
            dict(type='DropPath', drop_prob=drop_path_rate)
        ) if drop_path_rate > 0. else nn.Identity()

    def forward(self, x, hw_shape):
        x = x + self.drop_path(self.attn(self.norm1(x), hw_shape))
        x = x + self.drop_path(self.ffn(self.norm2(x)))
        return x


class ConditionalPositionEncoding(BaseModule):
    """The Conditional Position Encoding (CPE) module.

    The CPE is the implementation of 'Conditional Positional Encodings
    for Vision Transformers <https://arxiv.org/abs/2102.10882>'_.

    Args:
       in_channels (int): Number of input channels.
       embed_dims (int): The feature dimension. Default: 768.
       stride (int): Stride of conv layer. Default: 1.
    """

    def __init__(self, in_channels, embed_dims=768, stride=1, init_cfg=None):
        super().__init__(init_cfg=init_cfg)
        self.proj = nn.Conv2d(
            in_channels,
            embed_dims,
            kernel_size=3,
            stride=stride,
            padding=1,
            bias=True,
            groups=embed_dims)
        self.stride = stride

    def forward(self, x, hw_shape):
        b, n, c = x.shape
        h, w = hw_shape
        feat_token = x
        cnn_feat = feat_token.transpose(1, 2).view(b, c, h, w)
        if self.stride == 1:
            x = self.proj(cnn_feat) + cnn_feat
        else:
            x = self.proj(cnn_feat)
        x = x.flatten(2).transpose(1, 2)
        return x


@MODELS.register_module()
class PCPVT(BaseModule):
    """The backbone of Twins-PCPVT.

    This backbone is the implementation of `Twins: Revisiting the Design
    of Spatial Attention in Vision Transformers
    <https://arxiv.org/abs/1512.03385>`_.

    Args:
        in_channels (int): Number of input channels. Default: 3.
        embed_dims (list): Embedding dimension. Default: [64, 128, 256, 512].
        patch_sizes (list): The patch sizes. Default: [4, 2, 2, 2].
        strides (list): The strides. Default: [4, 2, 2, 2].
        num_heads (int): Number of attention heads. Default: [1, 2, 4, 8].
        mlp_ratios (int): Ratio of mlp hidden dim to embedding dim.
            Default: [4, 4, 4, 4].
        out_indices (tuple[int]): Output from which stages.
            Default: (0, 1, 2, 3).
        qkv_bias (bool): Enable bias for qkv if True. Default: False.
        drop_rate (float): Probability of an element to be zeroed.
            Default 0.
        attn_drop_rate (float): The drop out rate for attention layer.
            Default 0.0
        drop_path_rate (float): Stochastic depth rate. Default 0.0
        norm_cfg (dict): Config dict for normalization layer.
            Default: dict(type='LN')
        depths (list): Depths of each stage. Default [3, 4, 6, 3]
        sr_ratios (list): Kernel_size of conv in each Attn module in
            Transformer encoder layer. Default: [8, 4, 2, 1].
        norm_after_stage(bool): Add extra norm. Default False.
        init_cfg (dict, optional): The Config for initialization.
            Defaults to None.
    """

    def __init__(self,
                 in_channels=3,
                 embed_dims=[64, 128, 256, 512],
                 patch_sizes=[4, 2, 2, 2],
                 strides=[4, 2, 2, 2],
                 num_heads=[1, 2, 4, 8],
                 mlp_ratios=[4, 4, 4, 4],
                 out_indices=(0, 1, 2, 3),
                 qkv_bias=False,
                 drop_rate=0.,
                 attn_drop_rate=0.,
                 drop_path_rate=0.,
                 norm_cfg=dict(type='LN'),
                 depths=[3, 4, 6, 3],
                 sr_ratios=[8, 4, 2, 1],
                 norm_after_stage=False,
                 pretrained=None,
                 init_cfg=None):
        super().__init__(init_cfg=init_cfg)
        assert not (init_cfg and pretrained), \
            'init_cfg and pretrained cannot be set at the same time'
        if isinstance(pretrained, str):
            warnings.warn('DeprecationWarning: pretrained is deprecated, '
                          'please use "init_cfg" instead')
            self.init_cfg = dict(type='Pretrained', checkpoint=pretrained)
        elif pretrained is not None:
            raise TypeError('pretrained must be a str or None')
        self.depths = depths

        # patch_embed
        self.patch_embeds = ModuleList()
        self.position_encoding_drops = ModuleList()
        self.layers = ModuleList()

        for i in range(len(depths)):
            self.patch_embeds.append(
                PatchEmbed(
                    in_channels=in_channels if i == 0 else embed_dims[i - 1],
                    embed_dims=embed_dims[i],
                    conv_type='Conv2d',
                    kernel_size=patch_sizes[i],
                    stride=strides[i],
                    padding='corner',
                    norm_cfg=norm_cfg))

            self.position_encoding_drops.append(nn.Dropout(p=drop_rate))

        self.position_encodings = ModuleList([
            ConditionalPositionEncoding(embed_dim, embed_dim)
            for embed_dim in embed_dims
        ])

        # transformer encoder
        dpr = [
            x.item() for x in torch.linspace(0, drop_path_rate, sum(depths))
        ]  # stochastic depth decay rule
        cur = 0

        for k in range(len(depths)):
            _block = ModuleList([
                GSAEncoderLayer(
                    embed_dims=embed_dims[k],
                    num_heads=num_heads[k],
                    feedforward_channels=mlp_ratios[k] * embed_dims[k],
                    attn_drop_rate=attn_drop_rate,
                    drop_rate=drop_rate,
                    drop_path_rate=dpr[cur + i],
                    num_fcs=2,
                    qkv_bias=qkv_bias,
                    act_cfg=dict(type='GELU'),
                    norm_cfg=dict(type='LN'),
                    sr_ratio=sr_ratios[k]) for i in range(depths[k])
            ])
            self.layers.append(_block)
            cur += depths[k]

        self.norm_name, norm = build_norm_layer(
            norm_cfg, embed_dims[-1], postfix=1)

        self.out_indices = out_indices
        self.norm_after_stage = norm_after_stage
        if self.norm_after_stage:
            self.norm_list = ModuleList()
            for dim in embed_dims:
                self.norm_list.append(build_norm_layer(norm_cfg, dim)[1])

    def init_weights(self):
        if self.init_cfg is not None:
            super().init_weights()
        else:
            for m in self.modules():
                if isinstance(m, nn.Linear):
                    trunc_normal_init(m, std=.02, bias=0.)
                elif isinstance(m, (_BatchNorm, nn.GroupNorm, nn.LayerNorm)):
                    constant_init(m, val=1.0, bias=0.)
                elif isinstance(m, nn.Conv2d):
                    fan_out = m.kernel_size[0] * m.kernel_size[
                        1] * m.out_channels
                    fan_out //= m.groups
                    normal_init(
                        m, mean=0, std=math.sqrt(2.0 / fan_out), bias=0)

    def forward(self, x):
        outputs = list()

        b = x.shape[0]

        for i in range(len(self.depths)):
            x, hw_shape = self.patch_embeds[i](x)
            h, w = hw_shape
            x = self.position_encoding_drops[i](x)
            for j, blk in enumerate(self.layers[i]):
                x = blk(x, hw_shape)
                if j == 0:
                    x = self.position_encodings[i](x, hw_shape)
            if self.norm_after_stage:
                x = self.norm_list[i](x)
            x = x.reshape(b, h, w, -1).permute(0, 3, 1, 2).contiguous()

            if i in self.out_indices:
                outputs.append(x)

        return tuple(outputs)


@MODELS.register_module()
class SVT(PCPVT):
    """The backbone of Twins-SVT.

    This backbone is the implementation of `Twins: Revisiting the Design
    of Spatial Attention in Vision Transformers
    <https://arxiv.org/abs/1512.03385>`_.

    Args:
        in_channels (int): Number of input channels. Default: 3.
        embed_dims (list): Embedding dimension. Default: [64, 128, 256, 512].
        patch_sizes (list): The patch sizes. Default: [4, 2, 2, 2].
        strides (list): The strides. Default: [4, 2, 2, 2].
        num_heads (int): Number of attention heads. Default: [1, 2, 4].
        mlp_ratios (int): Ratio of mlp hidden dim to embedding dim.
            Default: [4, 4, 4].
        out_indices (tuple[int]): Output from which stages.
            Default: (0, 1, 2, 3).
        qkv_bias (bool): Enable bias for qkv if True. Default: False.
        drop_rate (float): Dropout rate. Default 0.
        attn_drop_rate (float): Dropout ratio of attention weight.
            Default 0.0
        drop_path_rate (float): Stochastic depth rate. Default 0.2.
        norm_cfg (dict): Config dict for normalization layer.
            Default: dict(type='LN')
        depths (list): Depths of each stage. Default [4, 4, 4].
        sr_ratios (list): Kernel_size of conv in each Attn module in
            Transformer encoder layer. Default: [4, 2, 1].
        windiow_sizes (list): Window size of LSA. Default: [7, 7, 7],
        input_features_slice(bool): Input features need slice. Default: False.
        norm_after_stage(bool): Add extra norm. Default False.
        strides (list): Strides in patch-Embedding modules. Default: (2, 2, 2)
        init_cfg (dict, optional): The Config for initialization.
            Defaults to None.
    """

    def __init__(self,
                 in_channels=3,
                 embed_dims=[64, 128, 256],
                 patch_sizes=[4, 2, 2, 2],
                 strides=[4, 2, 2, 2],
                 num_heads=[1, 2, 4],
                 mlp_ratios=[4, 4, 4],
                 out_indices=(0, 1, 2, 3),
                 qkv_bias=False,
                 drop_rate=0.,
                 attn_drop_rate=0.,
                 drop_path_rate=0.2,
                 norm_cfg=dict(type='LN'),
                 depths=[4, 4, 4],
                 sr_ratios=[4, 2, 1],
                 windiow_sizes=[7, 7, 7],
                 norm_after_stage=True,
                 pretrained=None,
                 init_cfg=None):
        super().__init__(in_channels, embed_dims, patch_sizes, strides,
                         num_heads, mlp_ratios, out_indices, qkv_bias,
                         drop_rate, attn_drop_rate, drop_path_rate, norm_cfg,
                         depths, sr_ratios, norm_after_stage, pretrained,
                         init_cfg)
        # transformer encoder
        dpr = [
            x.item() for x in torch.linspace(0, drop_path_rate, sum(depths))
        ]  # stochastic depth decay rule

        for k in range(len(depths)):
            for i in range(depths[k]):
                if i % 2 == 0:
                    self.layers[k][i] = \
                        LSAEncoderLayer(
                            embed_dims=embed_dims[k],
                            num_heads=num_heads[k],
                            feedforward_channels=mlp_ratios[k] * embed_dims[k],
                            drop_rate=drop_rate,
                            attn_drop_rate=attn_drop_rate,
                            drop_path_rate=dpr[sum(depths[:k])+i],
                            qkv_bias=qkv_bias,
                            window_size=windiow_sizes[k])